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Abstract

The increasing variety of combinations of different building technology components offers a high potential for energy
and cost savings in today’s buildings. However, in most cases, this potential is not yet fully exploited due to the lack of
intelligent supervisory control systems that are required to manage the complexity of the resulting overall systems. In this
article, we present the implementation of a mixed-integer nonlinear model predictive control approach as a smart real-
time building energy management system. The presented methodology is based on a forward-looking optimization of the
overall energy costs. It takes into account energy demand forecasts and varying electricity market prices. We achieve
real-time capability of the controller by applying a decomposition approach, which approximates the optimal solution
of the underlying mixed-integer optimal control problem by convexification and rounding of the relaxed solution. The
quality of the suboptimal solution is evaluated by comparison with the globally optimal solution obtained by the dynamic
programming method. Based on a real-world scenario, we demonstrate that utilization of the real-time capable mixed-
integer nonlinear model predictive control approach in a building control system leads to savings of 16% in the total
operating costs and 13% in primary energy compared to the state-of-the-art control strategy without any loss of comfort
for the residents.
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1 Introduction

Structural changes in energy supply and distribution,
such as the increase in decentralized generation and
storage, the roll-out of smart building and communication
technologies, along with the dynamization of the
energy markets, lead to an increase in complexity in
today’s energy supply systems. The complexity is also
particularly evident at the building level. In today’s
buildings, there is a wide variety of combinations of
different components such as boilers, combined heat and
power units, solar/photovoltaic systems, thermal/electric
storage units, ventilation systems, etc. All actions in this
area follow the joint goal of increasing living comfort,
while at the same time maximizing energy efficiency and
minimizing energy costs. However, these competing goals,
in addition to the complexity, are also one of the main
reasons why there is still great potential for optimization of
the energy management of buildings in practice. According
to [1, 2], energy savings of up to 30% can be achieved
through improved connectivity and intelligent operation
management of building components. Model predictive
control (MPC) is getting more widespread and can be
considered as a promising tool to exploit these potentials
[3]. The (nonlinear) MPC is suitable for the control of
(nonlinear) multivariable systems and has the decisive
ability to predictively take into account constraints on the
control and state variables of the system. These features
make the MPC ideally suited as predictive supervisory
control of buildings’ energy management. This has already
been demonstrated in various studies, such as [4, 5, 6].

Within this paper, we present the setup of mixed-integer
nonlinear model predictive control (MI-NMPC) for
supervisory control of a residential combined heat and
power plant for the first time. Due to the discrete on/off
characteristics in addition to the continuously modulable
operating range of the components used in such energy
supply systems, the corresponding optimization problem
results in a mixed-integer optimal control problem
(MIOCP). For solving these particular problems, methods
such as dynamic programming [7, 8] or branch-and-bound
algorithms [9, 10, 11] exist, as well as corresponding
solvers such as the open-source solver Bonmin [10].
However, these methods attempt to determine the exact
solution. Therefore, they are often only suitable for
applications with small prediction horizons, since problem
complexity and, thus, the computation time for solving
increase exponentially with the horizon [4]. As a remedy,
we use the decomposition approach, first introduced
in [12], to determine an approximated solution for the
original MIOCP in significantly reduced time. This
approach has already been successfully applied to e.g. the
fuel energy management for a hybrid electric vehicle [13]
and the optimization of chromatographic processes [14].
For the aforementioned practical application, we
determine the energy and cost saving potential (global
optimal solution) by solving the MIOCP with dynamic
programming offline (open-loop control) and compare
the results with the state-of-the-art control strategy. In
this context, we also investigate the impact of varying
electricity market prices on the total costs within the
optimal control system. Subsequently, we evaluate the
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quality of the suboptimal solution obtained by the new
real-time capable approach in a closed-loop simulation.
The article is structured as follows. First, we describe
the considered power supply system and the resulting
optimization task. Next, a presentation of the modeling
approach follows. In Section 3 the general formulation of
the MIOCP is introduced and the previously mentioned
control methodology together with the reformulations of
the MIOCP, required for implementation, are presented.
Based on numerical results, we show the achievable
savings as well as the real-time capability of the presented
approach and close the article with conclusions and an
outlook on future work.

2 Building Energy Supply System

2.1 System Description and Problem
Definition

The energy supply system considered here is a
combination of components, typically found in residential
buildings supplied by combined heat and power (CHP)
units. As shown in Figure 1, the system consists of a
gas-driven modulating micro-CHP unit, a condensing
boiler, which can be used as a backup heater, and a
buffer storage tank. Generated thermal energy is stored
in the buffer tank and, when required, is used for heating
and as a source of domestic hot water. The electricity,
generated by the CHP unit, is used on demand in the
house. The excess energy is fed into the public power grid
- conversely, a lack of electrical energy is covered from
the grid. Hence, the system has different energy sources,
each with different efficiencies and costs. Moreover, the
CHP unit generates electricity and heat simultaneously,
but both types of energy are not always needed at the
same time and the storage tank has only limited capacity
for buffering. The operation of CHP units in single- and
multi-family houses is typically limited only to the control
of thermal energy - similar to classical heating control.
This is done in order to ensure the thermal demand and,
thus, to fulfill the most important user requirement. The
electrical energy is generated independently of the user’s
demands. Therefore, a large part of the generated energy
is fed into the grid which results in considerable financial
losses. This can directly be seen by the energy prices,
which in our case are �1 = 5.31 cents/kWh for the gas
purchase and an average value of �3 = 26.06 cents/kWh
for the electricity purchase from the grid. Furthermore,
the customer receives payments of �4 = 4 cents for each
self-generated kWh (regardless of feed-in or own use)
and �2 = 8.67 cents/kWh for the feed-in of self-generated
electrical energy. With a maximum electrical efficiency
of about 25%, it is directly clear that the feed-in itself
cannot be an economic goal. In fact, the greatest cost
savings occur in the opposite case, namely, in avoiding
the comparatively high electricity purchase costs, i.e.
in maximizing the use of in-house electricity. At the
same time, however, the simultaneous thermal energy
generation vs. current and future thermal demand/buffer

storage capacity and occupant comfort requirements must
always be taken into account. This leads to a multiobjective
economic optimal control problem (OCP).
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Figure 1 Scheme of control approach and energy system

We propose an approach to solve the resulting problem
by use of advanced control engineering methods, i.e. by
combining an energy demand prediction, which is based
on machine learning methods, with a MI-NMPC strategy.
The optimal operating strategy of the overall system is
calculated with consideration of the total operating costs,
constraints and energy demands for the next 24 hours.

2.2 Modeling Approach
The nonlinear model of the energy supply system, used
for simulation and control, represents the energy exchange
between the individual components and the surroundings.
Thus, it is based on the electrical and thermal efficiency
curves of the generators and takes into account losses to
the environment. The class of variables is composed of
the electrical power �, the thermal power ��, �� as general
input power and the binary input variable �� describing the
on/off state of the devices. All parameters of the model are
summarized in Table 1. The input and control variable of
the CHP unit is the electrical generation power

�chp(�) = �1(�)�1(�), (1)

which can be modulated continuously in the range of �1 =
1.65 - 4.55 kW when switched on (�1 = 1) and is zero when
switched off (�1 = 0). The heating power of the gas ��g,chp,
which is consumed during operation, based on the higher
heating value, is calculated from the electrical efficiency
characteristic �e of the CHP unit

��g,chp(�) =
�chp(�)

�e(�chp(�))
=

�chp(�)
�0 + �1�

2
chp(�) + �2�chp(�)

. (2)

For the electrical efficiency curve, a quadratic relationship
is assumed according to [15] (see Figure 2). Moreover,
Eq. (2) already takes into account the electric self-
consumption of the CHP unit during operation. The
thermal power ��chp is derived from Eq. (2), extended by
the thermal efficiency curve �q. The thermal efficiency is

NEIS Conference 2021 ∙ Hamburg ∙ 13. – 14.09.2021 

ISBN 978-3-8007-5651-3 © VDE VERLAG GMBH ∙ Berlin ∙ Offenbach78



Table 1 Parameters of the energy system model

Name Description Unit Value
�0 Coefficient of steady- - 0.2
�1 state electr. conversion W-2 -4.2e-9
�2 efficiency of CHP unit W-1 4.0e-5
�0 Coefficient of steady- - 0.1
�1 state thermal efficiency W-2 -4.3e-8
�2 of CHP unit W-1 3.0e-4
� Surface of storage m2 5.5
�w Specific heat capacity Ws/(kgK) 4190
�0 Coefficient of electr. W 15.7
�1 consumption of boiler - 2.0e-3
�2 Coefficient of thermal W-1 -1.5e-6
�3 efficiency of boiler - 9.9e-1
�fil Heat loss coefficient W/K 3
�sto Heat loss coefficient W/(m2K) 0.5
� Storage water mass kg 900

Δ�chp temperature difference K 80
Δ�boi temperature difference K 65

also modeled by a quadratic characteristic (see Figure 2).
We take into account the thermal losses of the CHP unit
during operation and energy transfer to the buffer storage
tank by subtracting a constant factor. This factor equals the
multiplication of the heat loss coefficient �fil and the sum
of the average temperature differences Δ�chp between the
individual components and the surroundings. The resulting
equation reads

��chp(�) =
�chp(�)�q(�chp(�))

�e(�chp(�))
−�filΔ�chp�1(�)

=
�chp(�) (�0 + �1�

2
chp(�) + �2�chp(�))

�0 + �1�
2
chp(�) + �2�chp(�)

−�filΔ�chp�1(�).

(3)

The input and control variable of the condensing boiler is
the heating power of the gas

��g,boi(�) = �2(�)�2(�), (4)

which, analogous to the CHP unit, can be modulated
continuously in the range of �2 = 6 - 32 kW when
switched on (�2 = 1) or is zero in the other case (�2 = 0).
The thermal output power ��boi is derived from a linear
efficiency characteristic from 94% to 98% related to the
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Figure 2 Thermal and electrical efficiency of CHP unit

higher heating value

��boi(�) = �2 ��2
g,boi(�) + �3 ��g,boi(�) −�filΔ�boi�2(�). (5)

Thermal losses to the environment during the generation
and distribution processes are also taken into account
analogously to the CHP unit. For the sum of the
temperature differences, the corresponding parameter
Δ�boi is used due to the lower supply temperature of
the boiler. In addition to the gas, the condensing boiler
also consumes a small amount of electrical power �boi
during operation. This is taken into account by the linear
relationship

�boi(�) = �1 ��g,boi(�) + �0�2(�). (6)

The models of the power generation facilities consider only
the steady-state energy conversion processes. The time
constants of the dynamic processes, due to the heating up
and cooling down phases of the components, are below
the sampling times of the controller, considered here. E.g.
even after the facilities are switched off, the residual heat
is almost completely transported to the storage tank in a
comparatively short time. In addition, when considering
only the energy exchange, the heating up and cooling down
effects mainly balance each other out and are therefore
neglected. The buffer storage tank is modeled by use of
the incoming and outgoing thermal powers. The input
variables are the thermal powers of the power generation
facilities and the demand from the building ��con. The sum
of these powers minus the ambient losses, integrated over
time, results in the thermal energy of the storage tank �sto.
Here, the losses are calculated by the heat loss coefficient
�sto and the surface � of the storage tank, the water mass
�, the specific heat capacity �w and �sto. Thus, the thermal
energy in the storage tank is modeled by the following first-
order differential equation

��sto(�) = ��chp(�) + ��boi(�) − ��con(�)

−�sto
�

��w
�sto(�).

(7)

Since the storage model does not represent temperatures
and volume flows, effects such as convection and
conduction are not considered.
The last model component consists of the energy sinks
within the overall system, which in our case are composed
of the thermal and electrical consumptions ��con and �con
in the building. The electrical consumption is needed to
calculate the total energy costs. From a control point
of view, the consumption data corresponds to input
variables that cannot be manipulated and are provided
by measurements or, when the model is used within
a predictive controller, results from an external energy
demand forecast.

3 Mixed-Integer Optimal Control

In this section, we first introduce the considered
optimization problem. The problem statement is then
reformulated by appropriate algorithms to guarantee real-
time applicability.
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3.1 Problem Formulation
The goals of operating an energy supply system are
minimizing the overall energy costs while at the same time
ensuring permanent supply of the required energy. As
mentioned in Section 2, this results in a multiobjective
economic optimal control problem that evaluates the total
operating costs in the objective function. More specifically,
the total costs consist of the costs for the gas consumption
of the producers (weighted by the gas price 𝑐1), the
remuneration for self-generated electricity (weighted by
𝑐4) and the costs for electricity purchases from the grid
(weighted by 𝑐3) or payments for feeding into the grid
(weighted by 𝑐2). This results in the Lagrange term

𝑙 (𝑡,u(𝑡),v(𝑡), 𝑃con(𝑡)) =
( ¤𝑄g,chp(𝑡) + ¤𝑄g,boi(𝑡))𝑐1 −𝑃chp(𝑡)𝑐4

+ (1− 𝑣3(𝑡)) (𝑃con(𝑡) +𝑃boi(𝑡) −𝑃chp(𝑡))𝑐3

+ 𝑣3(𝑡) (𝑃con(𝑡) +𝑃boi(𝑡) −𝑃chp(𝑡))𝑐2.

(8)

The electricity price changes depending on whether
electrical energy is fed into or drawn from the grid. This
distinction is taken into account by an additional binary
control function 𝑣3. To ensure the correct assignment, the
following must hold

𝑣3(𝑡) =
{

1 for 𝑃con(𝑡) +𝑃boi(𝑡) ≤ 𝑃chp(𝑡)
0 for 𝑃con(𝑡) +𝑃boi(𝑡) > 𝑃chp(𝑡)

, (9)

which is realized by means of the nonlinear constraints

(1− 𝑣3(𝑡)) (𝑃chp(𝑡) −𝑃con(𝑡) −𝑃boi(𝑡)) ≤ 0, (10)

𝑣3(𝑡) (𝑃con(𝑡) +𝑃boi(𝑡) −𝑃chp(𝑡)) ≤ 0. (11)

The resulting MIOCP reads

min
u( ·)v( ·)

∫ 𝑡f

𝑡0

𝑙 (u(𝑡),v(𝑡), 𝑃con(𝑡))d𝑡 (12)

s.t. ¤𝑄sto(𝑡) = 𝑓 (𝑄sto(𝑡),u(𝑡),v(𝑡), ¤𝑄con(𝑡)),
𝑄sto(𝑡0) =𝑄0,

𝑄sto(𝑡) = [𝑄min,𝑄max] for 𝑡 ∈ [𝑡0, 𝑡f],
u(𝑡) = [umin,umax] for 𝑡 ∈ [𝑡0, 𝑡f],

0 ≥ c(u(𝑡),v(𝑡), 𝑃con(𝑡)) for 𝑡 ∈ [𝑡0, 𝑡f],
v(𝑡) ∈ {0,1}3 for 𝑡 ∈ [𝑡0, 𝑡f],

where 𝑄sto represents the system state corresponding to
the thermal energy stored in the tank, uT = [𝑢1, 𝑢2] the
vector of continuous control variables, vT = [𝑣1, 𝑣2, 𝑣3] the
vector of binary control variables and cT the vector of
the constraints in Eq. (10) and (11). For the state 𝑄sto
and the controls, additional point and path constraints (i.e.
boundary values) apply.

3.2 Convexification and Relaxation
Within a MI-NMPC, the MIOCP (12) is solved for a
finite time horizon, here 𝑇 = 24 h, in each time step.
However, only the first values of the calculated optimal
control variable sequences are used for the process control.

At the next time step, the optimization is repeated for the
new shifted time horizon with the updated states. Thus, the
optimal open-loop control is transferred into closed-loop
control. Consequently, the available duration of solving the
MIOCP is limited by the sample time, which in our case is
𝑇S = 10 min. Therefore, in the context of MI-NMPC, we
determine an approximated solution for the MIOCP (12)
based on the ideas in [12] by executing the following steps:

1) Reformulate the MIOCP (12) by means of outer
convexification.

2) Solve a continuous relaxation of the reformulated
problem.

3) Compute the Sum-Up Rounding strategy (SUR) from
[12] on the relaxed optimal solution to obtain an
integer feasible control trajectory for the discrete
control variables.

We apply the outer convexification by introducing a new
binary control function 𝜔𝑖 for each possible choice of
v(𝑡) = w𝑖 ∈ {(0,0,0), (0,0,1), ..., (1,1,1)}. The equivalent
reformulation of (12) reads

min
u( ·)𝝎 ( ·)

8∑︁
𝑖=1

∫ 𝑡f

𝑡0

𝑙 (u(𝑡),w𝑖 , 𝑃con(𝑡))𝜔𝑖 (𝑡)d𝑡 (13)

s.t. ¤𝑄sto(𝑡) =
8∑︁
𝑖=1

𝑓 (𝑄sto(𝑡),u(𝑡),w𝑖 , ¤𝑄con(𝑡))𝜔𝑖 (𝑡),

𝑄sto(𝑡0) =𝑄0,

𝑄sto(𝑡) = [𝑄min,𝑄max] for 𝑡 ∈ [𝑡0, 𝑡f],
u(𝑡) = [umin,umax] for 𝑡 ∈ [𝑡0, 𝑡f],

0 ≥ c(u(𝑡),w𝑖 , 𝑃con(𝑡))𝜔𝑖 (𝑡) for 𝑡 ∈ [𝑡0, 𝑡f],
𝝎(𝑡) ∈ {0,1}8 for 𝑡 ∈ [𝑡0, 𝑡f],

1 =

8∑︁
𝑖=1

𝜔𝑖 (𝑡) for 𝑡 ∈ [𝑡0, 𝑡f] .

In our particular case, two of the newly introduced binary
control functions and 12 of the 2 · 8 = 16 constraints can
be omitted, since in practice those constraints are either
always satisfied regardless of 𝜔𝑖 or can never be satisfied
for 𝜔𝑖 = 1. Thus, the optimizer would never activate those
cases, which is why a definition of these control functions
and associated constraints is superfluous.
Relaxation of the binary control functions 𝝎 results in the
nonlinear continuous OCP

min
u( ·)𝜶 ( ·)

6∑︁
𝑖=1

∫ 𝑡f

𝑡0

𝑙 (u(𝑡),w𝑖 , 𝑃con(𝑡))𝛼𝑖 (𝑡)d𝑡 (14)

s.t. ¤𝑄sto(𝑡) =
6∑︁
𝑖=1

𝑓 (𝑄sto(𝑡),u(𝑡),w𝑖 , ¤𝑄con(𝑡))𝛼𝑖 (𝑡),

𝑄sto(𝑡0) =𝑄0,

𝑄sto(𝑡) = [𝑄min,𝑄max] for 𝑡 ∈ [𝑡0, 𝑡f],
u(𝑡) = [umin,umax] for 𝑡 ∈ [𝑡0, 𝑡f],

0 ≥ c(u(𝑡),w𝑖 , 𝑃con(𝑡))𝛼𝑖 (𝑡) for 𝑡 ∈ [𝑡0, 𝑡f],
𝜶(𝑡) ∈ [0,1]6 for 𝑡 ∈ [𝑡0, 𝑡f],

1 =

6∑︁
𝑖=1

𝛼𝑖 (𝑡) for 𝑡 ∈ [𝑡0, 𝑡f] .
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Note: The considered system has another constraint, which
is not yet considered in the above formulations. To reduce
the wear of the CHP unit due to frequent startup and
shutdown, the device has a minimum operation time of
60 min after each activation. Such minimum dwell times
cannot be represented in the solution of a continuous OCP
and, therefore, have to be considered in the rounding in
step 3. The consideration of dwell times in the solution of
MIOCPs is part of future work.

4 Numerical Results

Within this section, we show numerical results obtained by
the cost-optimal operation of the considered energy supply
system. We first determine the achievable energy and
cost saving potential by comparing an offline (open-loop)
optimal control with the classical operation strategy. Then,
the real-time computation of the approximated solution
is performed online (closed-loop) and the achievable
optimality is investigated. The simulation sample time is
�S = 10 min. We use real consumption data, measured
with high temporal resolution (1-second cycle), for both
simulation and prediction of the energy consumption
("exact prediction").

4.1 Dynamic Programming vs. State-of-the-
Art Control Strategy

To determine the globally optimal solution dynamic
programming is used. In this method, problem (12)
is solved recursively by dividing it into subproblems
and storing the intermediate results [7]. This technique
is constrained by the "curse of dimensionality" and is,

therefore, used as an online optimization strategy only
for small-size problems. For the optimization problem
considered here, the computation time of dynamic
programming, needed to solve the problem, significantly
exceeds the sample time. However, it is ideally suited
for offline investigation of the potential of an optimization
approach compared to a classical strategy. In the setup of
the optimal control, we additionally consider two different
approaches: taking 1) constant and 2) varying electricity
market prices into account within the optimal control
system. The OCPs are solved by means of the dpm-
function from [16] in Matlab.
In Figure 3 one can see the trajectories for the different
control methods together with the main influencing
variables. These are the outside temperature, the electricity
prices on the European Energy Exchange (EEX) and the
electrical and thermal energy consumption. To achieve the
goal of minimizing the total operating costs, the dynamic
programming optimizer (DP) exploits the information
about the future energy demands and shifts the operating
hours of the CHP unit to the electrical peak load periods
whenever possible (see electrical power consumption and
generated power in the center plot in Figure 3). The
capacity of the buffer storage is fully utilized to bridge
periods of low electrical consumption (see bottom plot in
Figure 3). As a result, the amount of in-house electricity is
maximized while uneconomical feed-in is minimized. At
the same time, thermal energy needs are consistently met
(no overrun of the 13.5 and 50 kWh storage limits occur).
In contrast, the heat-led control strategy (SoA) is mainly
based on the level of the storage tank and the outdoor
temperature. Predefined day times for low, medium or
high production are used to specify the desired level of the
storage tank. This way, a higher overall level is maintained
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Figure 3 Characteristics of the power supply system - (a) outside temperature �outside and price of electricity �3, (b)
electrical power consumption �con and generated power �chp and (c) thermal power consumption ��con and energy
�sto in storage with heat-led control strategy (SoA) and dynamic programming approach (DP) with constant (cp) and
varying (vp) electricity price
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in the storage tank. The future demand is not known in
advance and the controller, therefore, always tries to keep
sufficient thermal energy for high consumption times, e.g.
on the first day of the simulation.
The boiler serves as a backup heater and is only used when
there is a high thermal demand on very cold days. In the
period under consideration, support by the backup heater
is not required at any time.
Table 2 summarizes the savings of the optimal control
approach with constant (cp) and varying (vp) electricity
prices compared to the state-of-the-art control strategy
for a period of 7 days. Here, one can also see that the
additional consideration of varying electricity prices brings
further cost savings. However, these extra savings are
comparatively low due to the small price fluctuation. From
a financial point of view, often it is not reasonable to shift
the electricity production of the CHP unit from the peak
load to the lower price periods.

Table 2 Savings of dynamic programming (DP)
compared to SoA-control strategy for a period of 7 days

Operat.
costs

Gas
consum.

Elect.
feed

Elect.
purchase

DP,cp -16.5% -12.8% -16.5% -32.3%
DP,vp -16.6% -13.1% -16.0% -30.0%

4.2 Mixed-integer Real-Time Solution
The methodology described in Section 3.2 is used to
determine an approximated solution of the optimization
problem (12) in real-time. The calculations are carried out
using the Matlab interface of the numerical optimal control
software package acados [17]. In acados, a multiple
shooting approach is used to discretize the OCP. We solve
the resulting Nonlinear Program (NLP) by means of the
implemented SQP_RTI technique [18] using the interior-
point method solver HPIPM for quadratic programs [19]
in a MI-NMPC strategy. E.g. an approximated solution of
the problem (14) is determined at each time step and, after

rounding, the control variables are fed back to the process
(closed-loop simulation). For the boundaries on the state
variable and Eq. (10) and (11) we use soft constraints, i.e.
violation of the limits is allowed within the optimization,
but will be punished with penalty costs.
We compare the MI-NMPC solution with the globally
optimal solution obtained by dynamic programming to
evaluate the quality of the real-time capable suboptimal
solution. Both approaches consider varying electricity
prices. The deviations of the savings in operational costs,
gas consumption and electrical feed and purchase are
shown in Table 3.

Table 3 Deviation of MI-NMPC solution from globally
optimal solution for a period of 7 days

Operational
costs

Gas
consumpt.

Electrical
feed

Electrical
purchase

0.3% 0.2% 0.7% 2.3%

Figure 4 illustrates the resulting trajectories of the
generated electrical power and thermal energy level in
the storage together with the electrical and thermal
consumption. The trajectories of the approximated solution
partly show slight deviations from the globally optimal
curves, both in the power value and the on/off periods. In
total, the MI-NMPC still achieves high agreement with
the globally optimal solution. This becomes particularly
evident considering the cost differences in Table 3, which
deviate by only 0.3% for a period of 7 days. However, with
a computation time of less than one second, the presented
real-time capable approach is faster by a factor of 1000,
compared to dynamic programming.

5 Conclusions

We presented a new approach for the supervisory control
of building energy supply systems that enables significant
energy and cost savings without the need for additional
technical modifications. Our control strategy performs an
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online optimization of the operating modes based on a
model of the system to be controlled. It was applied to
an energy supply system, where savings of up to 16.6%
in the total operating costs and 13.1% in primary energy
were achieved. The present optimization routine results
in a mixed-integer optimal control problem (MIOCP),
whose exact solution requires a high computational effort.
By reformulating the MIOCP using direct convexification
and relaxation, a continuous OCP results. This leads to a
significant reduction of computational time. Subsequent
rounding of the discrete control variables yields an
approximated discrete solution. We have shown in a
closed-loop simulation that the results obtained by a MI-
NMPC strategy based on the presented approach achieve
high agreement with the globally optimal solution. As
consequence, the cost and energy saving potential is almost
completely exploited while the practice-relevant property
of real-time capability is fulfilled by our control technique.
Future work will investigate the consideration of dwell-
times within the optimization algorithm as well as the
influence of load prediction deviations on the achievable
optimality. In addition, the presented control strategy will
be implemented in practice in a real building.
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