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Abstract— The research project „Herbar Digital” was started in 

2007 with the aim to digitize 3.5 million dried plants on paper 

sheets belonging to the Botanic Museum Berlin in Germany. 

Frequently the collector of the plant is unknown, so a procedure 

had to be developed in order to determine the writer of the 

handwriting on the sheet. In the present work the static character 

was transformed into a dynamic form. This was done with the 

model of an inert ball which was rolled along the written character. 

During this off-line writer recognition, different mathematical 

procedures were used such as the reproduction of the write line of 

individual characters by Legendre polynomials. When only one 

character was used, a recognition rate of about 40% was obtained. 

By combining multiple characters, the recognition rate rose 

considerably and reached 98.7% with 13 characters and 93 writers 

(chosen randomly from the international IAM-database [3]). A 

global statistical approach using the whole handwritten text 

resulted in a similar recognition rate. By combining local and 

global methods, a recognition rate of 99.5% was achieved. 
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I. INTRODUCTION 

On a herbarium sheet many facts are noted, such as the site 
where it was found (if possible GPS coordinates), and the date 
it was found, collector and usually the scientific name of the 
plant. Among the approximately 3.5 million plants, there are 
many whose collector is unknown, because an appropriate note 
is missing on the herbarium sheet. An example of a label with 
handwritten data is shown in figure 1. These sheets should be 
allocated by the analysis of the handwriting contained in it. 
Also in other fields, e.g. in forensics, the allocation of 
handwriting to the corresponding author plays an important 
role. In literature there are many approaches to writer 
recognition which are mainly based on data of a digitization 
tablet. There, the handwriting coordinates are collected in real 
time and so the coordinate sequence can be evaluated. But in 
our case we are dealing with old static handwritings of writers 
who are no longer present. This so-called off-line writer 
recognition represents a more complicated problem, since no 
coordinate sequences are available. 

Research in automatic identification of writers focused mainly 
on the statistical approach. This led to the extraction of 
characteristics such as run lengths [10] and inclination 

distributions as well as entropy characteristics. Newer 
approaches, e.g. that of Siddiqi [12] try to combine global and 
local features, but still with modest success. Niels [5] uses 
character prototypes and differentiates writers on the basis of 
how often the prototypes occur in a long text. For this, a time-
consuming analysis of the characters has to be made by a 
handwriting expert. Srihari [6] developed individuality-
characteristics for static pictures by extraction of macro and 
micro features. It was shown that individual characters possess 
different capabilities of discriminating between writers. Said 
[11] presents a global approach and regards the handwriting as 
different textures, which he received by application of the 
Gabor filters and the co-occurrence matrix. Marti [4] analyzes 
the difference in handwritings by structural characteristics of 
each text line. Schomaker [8] uses the contour of connected 
components. Bensefia [1] uses local characteristics which 
originate from the analysis of the upper contour’s minima. 

 

Figure 1.  Label with handwriting  

 

In order to achieve a higher recognition rate, a new 

approach was developed in this work which transfers static 

handwriting into dynamic coordinate sequences. By the 

subsequent treatment of these x and y-coordinates with 

different algorithms, characteristics are obtained from single 

characters, which suggest the possible writer of the characters. 



 

 

 

II. CONVERTING STATIC CHARACTERS INTO DYNAMIC 

SEQUENCES 

 

During on-line writing recognition, e.g. with PDAs, time 

series are used to read handwriting. In order to make a similar 

approach possible for already written handwriting on paper, a 

software was developed which transfers handwriting into 

dynamic coordinate sequences. The handwritten character can 

be extracted out of a connected text. In order to recover the 

write line from old documents, whose writer is no longer 

present the following model serves: The writing is written as a 

groove in sand. A ball equipped with inertia rolls is rolled 

along the groove and reproduces the write line while keeping 

its last direction. If it arrives at a terminator point, it will run 

back and try to deviate from the last way. In unclear situations 

the ball can be pulled with a „rubber band “ (right mouse 

button) in the desired direction. If characters merge with the 

next text line, the write line (see figure 2) will be received as 

well. 

Figure 2.  Ball and handwriting with extracted G 

 

The dynamic coordinate sequence is to a large extent 

independent of the used writing pen. In figure 3 a “W” from a 

specimen of handwriting and the coordinate sequence are 

compared. 
 

Figure 3.  Comparison original and sequence of W 

 

III. LOCAL METHOD 

 

In order to compare characters and writers, the following 

procedures were explored:  

-Reproduction by vectors  

-Approximation by Fourier series  

-Approximation by Chebychev polynomials  

-Comparison by cross correlation  

-Approximation by Legendre polynomials  

-Comparison by image moments 

 

A. Vectors 

With the vector comparison the coordinate sequences of 

the individual characters are converted into angles. They are 

added according to the respective vector length and computed 

from the middle angles. These angles can be compared with 

those of the other existing characters. The differences received 

thereby give information on the character’s similarity. The 

determination of the angles takes place according to a system 

which is similar to the Freeman code [2]. In figure 4 the 

pattern of the coding is represented. For illustration, a “C” and 

its reproduction are represented by 4 vectors. 

 

 

Figure 4.  Angle code, original C and reproduction 

 

B. Fourier series 

By a Fourier expansion a repetitive function can be 
represented as a set of sine and cosine functions, whose 
frequencies are integral multiples of the basic frequency 
ω=2π/T. 
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f(t) is approximated by finite trigonometric polynomial fn(t).     
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By the coefficients the character can be back-transformed. In 

figure 5, an original “C” and an approximation with 64 

coefficients is shown.  
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Figure 5.  Original C and Fourier reproduction 

C. Chebychev polynomials 

Functions can be approximated by the use of Chebychev 

polynomials of the first kind with a very high accuracy. The 

polynomials are computed by the following formula: 

]1,1[)),cos(cos()(  xxarnxTn  

A polynomial Tn(x) has exactly n zeros in the interval [-1,1]. 

In figure 6 the Chebychev polynomials up to the 4th order are 

represented. 

 

 

Figure 6.  Chebychev polynomials 

 

In order to get the Chebychev coefficients needed in this 

application, it is necessary to approximate the writing process 

of the characters by the following expression: 

 

 

N=number of coefficients 

On the basis of the differences between the coefficients, the 

most similar characters can be determined. 

 

D.  Cross correlation 

With this method, the number of points of the characters is 

reduced by a sub sampling process. An example of a "C" 

reduced to 32 points is represented in figure 7. 

 

 
 

Figure 7.  Sub sampling with 32 points 

For each character the average value of the expansion in x and 

y-direction is calculated and divided by the number of points 

of n of the character 
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In order to reach a scaling invariance, a standardization of the 

reduced characters is necessary. The standard deviation of the 

expansion in x and y-direction is computed. 
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The individual points of the character are compared in each 

case with those of the other existing characters. By the sum of 

the distances, information on the characters with the smallest 

deviation is obtained. Figure 8 shows the result of a 

comparison. From left to right, a “C”, the character with the 

largest similarity and the one between both are shown. 

 

Figure 8.   C, most similar character, differences 

E. Legendre polynomials 

In the 5th method for the determination of the character with 

the smallest deviation, the Legendre coefficients are used. In 

connection with the pertinent Legendre polynomials, functions 

can be approximated. The ones generally represented look as 

follows: 
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A polynomial Pn(x) has exactly n zeros in the interval [-1,1] 

and between two zeros of Pn(x), there exists one  zero of 

Pn+1(x). An approximation of the functions by the polynomials 

is done by 



 

 

 

 

 

where cn are the Legendre coefficients. They can be computed 

by 
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After the calculation a back transformed function can be 

produced by inserting the coefficients and the polynomials 

into the expression. An example of an approximation by the 

discrete Legendre transformation is given in figure 9 where 

“C” as original and as inverse transform is shown. 

 

Figure 9.  Original C, back transformed C 

F. Image moments 

The discrete geometrical moments are defined by the 
following expression: 

     dxdyyxfyxm qp

qp ),(,                                                                     

Eccentricity ε is the deviation from the roundness of an object. 

With a circle the value for ε is 0 and with a straight line the 

value is 1. For all other objects the values lie between 0 and 1. 

“C” represented in figure 10 has a value 0.0719, while the “I” 

shown has an eccentricity of 0.9931. 

 

 

 

 

 

 

 

Figure 10.   Low eccentricity, high eccentricity 

G. Splitting characters into two time series 

By the Fourier series, the Chebychev and the Legendre 

polynomials functions can be approximated. As you can see in 

figure 11 the character “Z” is not a function. Up to three y-

values for one x-value are existing. Therefore an 

approximation of the writing process cannot happen directly 

by one function. The problem is solved as the write line is split 

up into x and y-movement and afterwards each is separately 

discretely approximated. 

 

 

 

 

 

 

Figure 11.  x-y-diagram, x-t-diagram, y-t-diagram 

H. Reconstruction of characters 

With the help of the characteristics of most used comparison 

methods the original writing process can be reconstructed again. 

The accuracy of these reproductions depends on the number of 

used features. The figures 12 and 13 show the reproductions of 

a “W”  by vectors, Fourier series, sub sampling method and 

Legendre polynomials. With all these methods the represented 

reproductions are numbered as follows:  

Original character(1) , reconstruction by 64 features(2), 32 

features(3), 16 features(4), 8 features(5), 4 features(6). 

 

 

 

 

 
 

Figure 12.  Reconstruction by vectors and Fourier series 

 

 

 

 

 

 
 

Figure 13.  Reconstruction by sub sampling and Legendre polynomials 

 

I. Results 

For the comparison with a large number of writers an 

international data base from Switzerland was chosen. The 

IAM-database [3] contains handwritings in English language 

with different texts. 6045 characters from 93 writers were 

extracted from the images (5 samples randomly chosen from 

each writer). The 13 characters m, k, h, l, u, f, v, o, d, b, s, w, y 

were selected (see figure 16). The characters possess different 

discriminatory abilities. In figure 14 the writer recognition 

rates using only one character is shown.
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Figure 14.  Recognition rates with one character 

 

 The combination of several characters promises a higher 

recognition rate by more information. For the comparison of 

the writers n characters of an unknown writer are selected. To 

each of the selected characters the most similar character of 

any of the well-known writers is assigned. The distances of the 

n most similar ones are added and a decision is made in favor 

of the writer with the minimum distance sum. It arises in 

figure 15 that the recognition rate with a higher number of 

used characters rises considerably. When combining the 

characters, the procedures with the Legendre, Fourier and 

Chebychev coefficients prove themselves as almost 

equivalent. It is interesting that the size-normalized characters 

first supply worse recognition rates. With increasing character 

number they measure up with the not normalized characters. 

 

Figure 15.  Recognition rates with multiple characters 

 

 

Figure 16.  Thirteen characters of one writer 

IV. GLOBAL METHOD 

 
In order to analyze the whole handwriting of different 

writers, a statistical approach [10] was selected. The 
handwriting is seen as a texture with a steady structure of line 
elements all over the image. For the description of such a 
texture, a suitable set of primitive elements has to be found 
whose frequency of occurrence is suited to distinguishing 
different writers to the greatest possible extent. The line 
segments of which the writing is composed can be taken as 
primitive elements of a handwriting specimen. Straight line 
segments may be obtained by the run lengths of pixel chains. 
The number and length of pixel chains is determined in eight 
different directions (see figure 17) and for each direction a 
frequency distribution is made. The features obtained by this 
shift-invariant transformation are nearly text independent, as 
long as there is enough text at hand (about three to five 
handwriting lines). The feature vector furnishes information 
about the sloping position, size, regularity and roundness of the 
handwriting. The developed software can be imagined as a 
shredder (see figure 17). The feature vectors obtained by the 
described method have a very high dimension. As neighbored 
components of the vector are strongly correlated, they are 
added to a certain degree so that only 8 features in each 
direction remain. Altogether a feature vector with 64 
components results (see figure 18). 

 

Figure 17.  Eight directions for the shredder 

Figure 18.   Feature vectors of 5 samples of 1 writer 

 



 

 

V. COMBINING LOCAL AND GLOBAL METHOD 

 

From the IAM-database [3] writers were chosen with at 

least 5 samples of each. 93 writers were found and so 

93*5=465 sheets with handwritings were processed. From 

each sheet 13 characters were extracted with the local method 

described in section 2. With a simple nearest neighbor 

classifier and the leaving one out method the correct writer 

was found in 459 cases. Only 6 samples 

[44(5),48(1),50(2),50(5),75(5),84(1)] were assigned to a 

wrong writer. The global method described in section 4 also 

mismatched only 6 but disjoint samples 

[25(5),32(3),37(2),40(1),52(4),88(2)]. Local and global 

methods were combined by computing the positions in both 

hit lists. The decision is made in favor of the writer with the 

minimum sum of the two hit lists positions. The error rate falls 

to 2 of 465 samples (see figure19). 

 

 

 

Figure 19.  Combining local and global method 
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