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Abstract: This paper proposes an extended Petri net for-
malism as a suitable language for composing optimal
scheduling problems of industrial production processes
with real and binary decision variables. The proposed ap-
proach is modular and scalable, as the overall process dy-
namics and constraints can be collected by parsing of all
atomic elements of the net graph. To conclude, we demon-
strate theuse of this framework formodeling themoulding
sand preparation process of a real foundry plant.
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Zusammenfassung: Dieser Beitrag schlägt einen erweiter-
ten Petrinetz-Formalismus vor, der für die Zusammenstel-
lung optimaler Planungsprobleme von vielfältigen indus-
triellen Produktionsprozessenmit realen und binären Ent-
scheidungsvariablen geeignet ist. Der vorgeschlagene An-
satz ist modular und skalierbar, da die Gesamtprozessdy-
namik und -beschränkungen durch Analyse und Betrach-
tung aller atomaren Elemente des Netzgraphen aufgestellt
werden können. Der Ansatz wird abschließend für die
Komposition des Planungsproblems des Formsandaufbe-
reitungsprozesses einer realen Gießereianlage eingesetzt.
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1 Introduction

Optimal scheduling of industrial production processes is
a well and long investigated subject of the academic com-
munity as well as the by industrial practitioners [1, 3, 5, 6].
The task of optimal process/machine scheduling is of-
ten tackled sequentially by optimization or operations re-
search experts, which first derive production unit mod-
els and afterwards synthesize the corresponding mixed-
integer optimization problem by statement of a minimal
performance metric as well as the minimal set of con-
straints that take the interdependence of production steps
and assets into account. As this monolithic synthesis pro-
cedure itself requires deep process insight and optimiza-
tion theory knowledge, it is not generic and, therefore,
does not scale well when applied to all kinds of applica-
tion domains aswell as complex processeswithmany con-
currency and synchronization elements or asynchronism.
From an industrial perspective, it is a major obstacle that
the resulting optimization problems are often very difficult
to grasp and understand by anyone not involved in their
synthesis, especially because such processes are typically
subject to continuous adaptation and the availability of ex-
perts is typically low. Consequently, the majority of pro-
duction processes are still scheduled by heuristic strate-
gies, which are suboptimal in terms of both throughput
and energy consumption. In order to accelerate the indus-
trial adoption of optimal process scheduling, a generic,
compositional framework is needed for both themodeling
and for setting up the optimal scheduling problem. Such a
frameworkmust in particular ensure, that any adjustment
of the process itself only requires a little effort for updating
the optimization problem.

Modeling, simulation, and analysis of production pro-
cesses have also been the subject of research for a long
time. In the respective literature, process modeling is of-
ten performed using the powerful Petri net formalism [4,
7, 11], which provides compact, modular, and easy-to-
understand models. In particular, process features like
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parallelism, concurrency and dependencies between sub-
processes can bewell captured and handled. Additionally,
there exists a rich and established analysis theory for in-
vestigating the reachability set, liveliness andother impor-
tant characteristics of processes. Petri nets are also used
to devise all kinds of supervisory controllers [2, 10, 11], but
they are seldom used in the context of optimal production
process scheduling.

This paper contributes by combining the main con-
cepts from the process analysis and the optimal process
scheduling literature. It proposes a modular framework,
which allows industrial practitioners to compose an op-
timal scheduling problem for a wide range of processes,
without deep insight into optimization theory. Section 2
presents a small extension of the classical Petri net the-
ory, which we believe is essential for capturing key prop-
erties, such as dwell time behavior found in a wide range
of industrial production processes. For instance, it is com-
mon that subprocesses or process steps take different du-
rations to finish and that actions like starting an electric
drive must not be reverted before a minimum duration
has passed. Also, subprocesses are often required to fin-
ish within a maximum duration after their start to meet
quality requirements. Therefore, after a brief summary of
Petri nets, two novel atomic elements, the spontaneously
forced transition and the spontaneously emptying transi-
tion, are introduced. These new elements are in particular
required to form the two novel net substructures we are
looking for, namely theminimum dwell-time place and the
maximum dwell-time place. Also, they are needed for cap-
turing further process characteristics not possible with the
standard elements. Section 3 continues with the explana-
tion of how to construct the optimal scheduling problem
in a bottom-up fashion by strictly considering local infor-
mation of atomic elements. In section 4, we demonstrate
the proposed approach at a real production process of a
foundry plant. Section 5 concludes the paper with a sum-
mary and a short outlook on open issues.

2 An extended Petri net formalism
for modeling industrial
production processes

2.1 Definition of the extended Petri net
formalism

In this publication, we adopt the notational conven-
tions and definitions for interpreted Petri nets from [4]
and extend these according to our needs for optimal

Figure 1: Atomic elements of a Petri net: (a) standard place-
transition sequence with arc weighing, (b) buffer place with upper
and lower capacities, (c) spontaneously forced transition, (d) spon-
taneous emptying transition, (e) test arc, (f) inhibitor arc.

process scheduling. A Petri net is bi-partite graph (ref.
Fig. 1 (a)), which is formally defined by the tuple PN =
{P , T ,Ppre,Post,M0, arcpre, arcpost} with sets of places
P = {p0, . . . , pq} and transitions T = {t0, . . . , tr}, Ppre ⊆
P × T denoting the set of incoming arcs, Post ⊆ T × P the
set of outgoing arcs andM0 denoting the initial marking.
The function arcpre : P × T → ℝ+ returns the arc weight-
ing for incoming arcs (pj, ti) ∈ Ppre and zero for all pairs
(pj, ti) ∉ Ppre. Likewise, the function arcpost : T × P → ℝ+

returns the arc weighting for outgoing arcs (ti, pj) ∈ Ppost
and zero for all pairs (ti, pj) ∉ Ppost. As an extension to
classical theory, we allow for real and not only integer
weightings, which ensure an efficient modeling of produc-
tionprocess involving continuous educt quantities as com-
mon in the process industry.

We use ∙ti = {pj, . . . , pk} ⊂ P to refer to pre-places,
i. e., all places pj | arcpre(pj, ti) > 0 and ti∙ = {pj, . . . , pk} ⊂
P to refer to post-places, for which pj | arcpost(ti, pj) > 0.
Similarly, we define ∙pj and pj∙ to refer to the pre- and post-
transitions of a place pj.

As a further extension to classical Petri net theory,
the marking map M : P → ℝ+ assigns a positive real
value to each place pj, which relates to the token load-
ing. Moreover, each place may have a finite capacity, i. e.,
0 ≤ Mj ≤ M(pj) ≤ Mj ≤ ∞ (see Fig. 1 (b)). Both exten-
sions are required to efficiently model buffers, which are
standard elements of any industrial production process.
To improve the readability of net graphs, we use grey back-
ground color to indicate real-valued buffer places. More-
over, we indicate finite capacities by super- and subscripts
on the left side of a place, but omit these in case of default
lower and upper capacities 0 and 1. For optimal process
scheduling, all Petri nets must evolve on a uniform time
grid T = (t0, t1, . . . , tN ). We useMk to refer to the marking
of a Petri net at time k, which constitutes the state of a Petri
net [4] and requirespj ∈M, if and only ifM(pj) > 0.A stan-
dard controlled transition ti ∈ {0, 1} is called enabled, if and
only if

∀pj ∈ ∙ti | M(pj) − arcpre(p
j, ti) ⋅ ti ≥ Mj , (1)

∀pk ∈ ti∙ | M(pk) + arcpost(t
i, pk) ⋅ ti ≤ Mk (2)
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hold for ti = 1. Note that (1), (2) only involve local infor-
mation ∙ti and ti∙ from the immediate environment of ti.
When an enabled transition ti is fired at time k, it updates
the current markingMk into its successor markingMk+1.
This happens by simultaneously removing arcpre(pj, ti) to-
kens from all pj ∈ ∙ti and by generating arcpost(ti, pk) new
tokens in all pk ∈ ti∙. As indicated by the attribute, an en-
abled standard controlled transition may be fired by the
supervisory controller, but it does not necessarily need to
fire when conditions (1), (2) are fulfilled. Due to capacity
constraintsM(pj) ≤ Mj in force, we can actually omit (2) as
these must hold for all k.

As a new element, complementary to standard con-
trolled transitions, we introduce a spontaneously forced
transition type denoted as t⋆i ∈ {0, 1} (see Fig. 1 (c)). Such
forced transitions may only be used within a restricted
context: each transition t⋆i must be connected to exactly
one pre- and one post-place pj and pk and the upper ca-
pacities must fulfillMk ≥ Mj. In this context, the enabling
and firing conditions become

∀pj ∈ ∙ti | M(pj) − arcpre(p
j, t⋆i) ⋅ t⋆i ≥ Mj , (3)

∀pj ∈ ∙ti | M(pj) −Mj ⋅ t
⋆i < arcpre(p

j, t⋆i) . (4)

As before, (3) is the enabling condition taking themarking
of the pre-place into account and (4) is the forcing condi-
tion, which enforces a firing of ti for as many update cy-
cles as the number of tokens in pj exceeds the weighting
arcpre(ti, pk). We require such elements for composing the
desired dwell-time places as shown in the next subsection.
It is possible, to extend the forcing condition (4) to a larger
modeling context involving synchronization structures, so
that ti possesses several pre-places. The necessary restric-
tion to be imposed, then, is arcpre(pj, ti) = Mj.

Moreover,we introduce yet another transition type, re-
ferred to as the spontaneously emptying transition denoted
by t∘i ∈ ℝ+ (see Fig. 1 (d)), which is a real instead of a bi-
nary variable. Like spontaneously forced transitions, these
elements may only be used in a specific modeling con-
text: each transition t∘i must be connected to exactly one
pre- and one post-place pj and pk and the upper capacity
Mk =∞ is infinite. In this context, the enabling and firing
conditions become

∀pj ∈ ∙ti | M(pj) − t∘i ≥ Mj , (5)

∀pj ∈ ∙ti | M(pj) − t∘i ≤ Mj . (6)

As inferred from (5) and (6), a forced emptying transition
will transfer all excessive tokens from the pre-place to the
post-place at each update cycle of the net. Such transitions
are required to capture the characteristics of transporta-

tion belts, which are also standard elements of industrial
production processes.

In a composed Petri net, each previously introduced
transition type may appear as a sink (ti∙ = 0) or a source
(∙ti = 0). The appearance of spontaneously forced sinks
or sources (transition type (c) and (d)) are, therefore, only
meaningful in conjunction with test or inhibitor arcs (see
Fig. 1 (e) and (f)). Sucharcsdonot influence the token load-
ing of their emerging place, but they require extensions to
the set of enabling conditions. For a controlled transition,
conditions

M(pj) − ti ≥ 0 , (7)
−M(pj) − ti ≥ −1 (8)

must be added, where (7) applies to a test arc and (8)
to an inhibitor arc. For forced or emptying transitions,
substructure-specific modifications to the enabling and
forcing conditions are required rather than pure exten-
sions.

2.2 Elementary net structures of complex
Petri nets

Building arbitrarily complex nets PN by application of
simple composition rules is possible with the atomic ele-
ments from subsection 2.1. Common basic substructures
found in Petri nets are sequences, forks, choices, merge
and synchronization elements [4]. These allow for model-
ing nearly any kind of complex industrial production pro-
cess containing asynchronism, concurrency, parallelism,
shared resources and synchronization elements. By aggre-
gating substructures into user-defined places, complexity
encapsulation and readability of net graphs can be further
improved. In the following, we introduce two novel aggre-
gated place types, the minimum dwell-time place and the
maximum dwell-time places to capture the dwell-time be-
havior, which is a fundamental feature of almost any pro-
duction process.

Proposition 1. To enforce a minimum dwell-time behavior
of N update cycles, a sequence of two places with finite ca-
pacity N, one place with capacity one and one forced transi-
tion is sufficient (see Fig. 2). The conditions associated with
a minimum dwell-time place are

−M(pj) ≥ −N , (9)
−M(pl) ≥ −1 , (10)

M(pj) − tm ≥ 0 , (11)
−M(pj) + N ⋅ tm ≥ 0 , (12)
−M(pn) ≥ −N . (13)
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Figure 2:Minimum dwell-time structure to be aggregated into user-
defined place.

Figure 3:Maximum dwell-time structure to be aggregated into user-
defined place.

Proof. Consider the situation, where firing of entry transi-
tion ti at sample k adds N tokens to the place pj. Condi-
tion (9) holds and prevents another firing of ti until pj and
pl are empty again. Conditions (10), (11) together require
tm = 1 for the sampling sequence (k + 1, . . . , k + N) and the
number of tokens in pj successively decrease. At sample
time (k + N + 1), all tokens from pj have been transfered to
pn. Condition (11) only holds for tm = 0 and the exit tran-
sition to is finally enabled to fire (N + 1) time samples af-
ter the subprocess was started. As required for minimum
dwell-time behavior, the process may reside more than N
samples in this state. Due to (10), the predecessor transi-
tion ti may also fire again earliest at the same time as to
even though pj = 0. Thus, the same subprocess may not
be restarted before the aggregated place is emptied.

Proposition 2. To enforce a maximum dwell-time behav-
ior of (N − 1) update cycles, a fork structure of two places,
one with finite capacity N, one forced source transition, one
emptying sink transition and a readiness-indicating place is
sufficient (see Fig. 3). The conditions associatedwith the ag-
gregated place are

−M(pj) + 1 ≥ 0 , (14)
−M(pm) + N ≥ 0 , (15)
M(pj) − tl ≥ 0 , (16)
−M(pj) + tl ≥ 0 , (17)

−N ⋅ pj − tn + N ≥ 0 , (18)
M(pm) − tn ≥ 0 , (19)

−M(pm) + tn + N ⋅M(pj) ≥ 0 . (20)

Proof. Consider the situation, where firing of the entry
transition ti at sample k adds one token to pj and con-
sumes the only token from ps. Condition (16) holds and
forces tl to start generating tokens in pm at the subsequent
sample times until bufferpm is finally full. Simultaneously,
as long as pj = 1, conditions (18) associated with the in-
hibitor arc prevents the emptying sink transition tn to fire.
Hence, to is forced to fire at sample (k +N − 1) at the latest,
or otherwise (15) would become invalid at the next time
instant (k + N). This firing yields pj = 0, so that condi-
tions (18)–(20) force tn to consume all tokens from pm and
reset the buffer. Also, ps = 1, so that ti may fire and restart
theprocess again. If to is firedbefore (k+N−1), then tn emp-
ties pm in the samemanner, even though themaximumca-
pacity is not reached.

3 Composition of optimal
scheduling problems

The equivalent state-spacematrix notation of a netPN [4]
allows us to easily set up an optimal scheduling problem

min
P,T

J(pk+1, tk) =
H
∑
k=0

wT
p(k+1)pk+1 +w

T
tktk s.t. , (21)

pk+1 = Ipk + Ntk , ∀k ∈ [0,H] , (22)
0 ≤ Cpk + Dtk + d, ∀k ∈ [0,H] , (23)
0 ≤ CH+1pH+1 , (24)

over the horizon length H, which constitutes a potentially
large MILP that can be solved efficiently by many off-the-
shelf solvers like CPLEX, GLKP, Gurobi and many others.
In the above equations, pk ∈ ℝq,+ is a q-dimensional pos-
itive vector composed of elements pj,k = M(pj) and tk is
a r-dimensional positive mixed-integer vector, where each
element refers to the current value of the corresponding
transition ti. I denotes an q × q identity matrix and the
q × r incidence matrix N = Npost −Npre is the sum of −Npre
and Npost with matrix elements nji,pre = arcpre(pj, ti) and
nki,post = arcpost(ti, pk). ThematricesC ∈ ℝc×q andD ∈ ℝc×r

and the vectord ∈ ℝc aggregate all transition enabling and
forcing conditions aswell as place capacity limits. The col-
lection of equations (22)–(24) can be conducted fully au-
tomatic by parsing each place and transition of a net, by
picking the corresponding set from (1)–(8) and translating
them into matrix notation. For each choice substructure
contained in PN , an additional mutual exclusion condi-
tion∑ti∈pj∙ t

i ≤ 1 must be added, to forbid the firing of mul-
tiple post-transitions of pj.
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Figure 4: Sand preparation of a foundry. left: schematic process; right: Petri net model.

After collecting the constraint set fully automatic, all
that is left to define are the weighting vectors wpk ∈ ℝ

q

andwtk ∈ ℝ
r,which are typically time-invariant. The latter

vectorswtk ∈ ℝ
r are exclusively used to account for switch-

ing costs, while the former vectors can be used to penal-
ize on-/off-times, process timing in general, or the inven-
tory of buffers. Depending on the problem at hand, it may
therefore be beneficial to introduce synthetic places into
the process description, which are not necessarily needed
for describing the process execution itself, but for the cost
definition later on (counter places, timer places, etc.). By
extending thedecision variable spacewith slack variables,
we can also impose costs for only specific variable inter-
vals of pk or soften capacity constraints.

4 An energy-optimal scheduling
problem for a moulding sand
foundry process

We have employed the previously introduced framework
to set up the optimal scheduling problem for a mould-
ing sand foundry process (see Fig. 4, left: schematic pro-
cess). In this essential, fully automated production step of
foundry plants, sand is prepared for the casting moulds.
It starts by dosing a fixed amount ΔmS = 6000 kg of sand
batch-wise into a scale and dumping this sand from the
scale into one of twomixing units. In themixing units, the
sand is processed for a fixed duration to adjust its mould-
ing properties. Afterwards, the processed sand is trans-
ported from the mixing unit hoppers to the machine hop-
per and buffered for consumption by the moulding pro-

cess. The mixing units must be selected already at the be-
ginning of the dosing. Both, the start of dosing as well
as the dumping of the sand into the mixing units can be
freely controlled. The dosing itself takes a finite duration
of ΔtS = 5Δt, with Δt being the chosen cycle time of the
Petri Net. Dumping of the sand into the mixing units hap-
pens instantaneously but is only permitted, if the mixing
unit is running in idle. The sand processing takes a finite
duration of ΔtM = 9Δt. The specification for the sand qual-
ity requires dumping the complete sand load ΔmS immedi-
ately at the end of processing into the corresponding hop-
pers. Both hoppers are equipped with a controllable ex-
traction belt, which over each sampling interval can trans-
fer each a finite mass ΔmMH = 58Δt kg of sand onto a con-
tinuously running transport belt. The sand on the trans-
port belt needs ΔtT = 2Δt time units to arrive at the com-
mon machine hopper. On the downstream side, buffered
sand is consumed from themachine hopper by themould-
ing machine with a fluctuating demand of ΔmMD. During
production, the inventory of all three hoppers have to re-
main between lower and upper levels.

In contrast to our previous work [8, 9], where we
followed the standard monolithic OCP construction ap-
proach, here we apply the previously introduced compo-
sitional Petri net formalism to set-up the process model
and construct the optimal scheduling problem afterwards
bottom-up. One advantage of this approach is, that we in-
corporate the process interdependencies directly into the
model, which can be composed without any knowledge
of mixed-integer linear programming (MILP), and do not
have to worry about these any more, when setting up the
constraint system. The resulting net graph is shown on the
right side of Fig. 4. It consists of 16 places (q = 16), two of
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them minimum dwell-time places (see Fig. 2) and 5 buffer
places, 14 transitions (r = 14), 10 standard controlled tran-
sitions, 2 spontaneously forced transitions (see Fig. 1, c)
and 2 spontaneous emptying transitions (see Fig. 1, d), and
43 standard arcs. Thuswithout the introduced Petri net ex-
tensions, accurately capturing the essential properties of
this still relatively simple process would have been impos-
sible. All in all, we collect 33 constraints (c = 33), to de-
scribe the enabling and forcing conditions of the transi-
tions. In addition to that, we have 32 box constraints re-
sulting from the place capacity limits. Due to space con-
straints, we omit to state them here.

The scheduling objective of this process lies in mini-
mizing the energy consumption, which is mainly related
to the idle times of the mixing units (wpk,5 = wpk,7 = 75Δt)
and costs for switching on themixermotors (wtk,3 = wtk,4 =
2025). Moreover, temporary buffering of sand in the scale
is penalized, which can be achieved by adding two addi-
tional constraints p3 − (1−p1)− e6 ≤ 4, p3 − (1−p2)− e7 ≤ 4
with continuous slack variables e6 and e7 as enabling indi-
cators for the corresponding transitions andassociatewith
these a cost of wek,i = 106. Moreover, we soften the hopper
inventory constraints by introduction of four additional
continuous slack variables s12u, s13u, s16l, s16u, and substi-
tution of the corresponding hard inventory constraints.

In summary, we arrive at an optimal scheduling prob-
lem with 24 real and 12 binary decision variables per up-
date cycle. Selecting a horizon length of H = 240 for a cy-
cle time of Δt = 10s, this translates into a MILP with 5760
real and 2880 binary decision variables, 3840 equality and
15632 inequality constraints. We must emphasize, that the
resulting mixed-integer optimization problem is not min-
imal in the number of decision variables and constraints,
but the MILP is still tractable within seconds using CPLEX
and state-of-the-art PC office hardware. This would be fast
enough for deployment in the real plant.

5 Conclusions

This article proposes a new flavor of Petri nets, which
are suited for modeling a large variety of production pro-
cesses. The introduced substructures for imposing mini-
mum and maximum dwell-time behavior are crucial ele-
ments for this task. It was explained, how the local in-
formation associated with each atomic element of a Petri
net can be automatically collected and aggregated into a
MILP optimization problem formulation. By solving such
problems an optimal production schedule can be derived.

The value of this concept was demonstrated by model-
ing a real-world moulding sand preparation process of a
foundry plant, without the need to have knowledge about
MILP.

Open issues to be further investigated are, how to im-
prove numerical tractability, e. g., by condensing the usu-
ally non-minimal optimization problem resulting from the
automatic synthesis process and the provision of an engi-
neering toolbox, which automatically translates a process
description into a supervisory control software for direct
deployment on off-the-shelf embedded control hardware.
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