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Abstract — For anomaly-based intrusion detection in
computer networks, data cubes can be used for building a
model of the normal behavior of each cell. During inference
an anomaly score is calculated based on the deviation of
cell metrics from the corresponding normality model. A
visualization approach is shown that combines different
types of diagrams and charts with linked user interaction
for filtering of data.
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I. INTRODUCTION

There are currently three different approaches to in-
trusion detection in computer networks. First, traditional
intrusion detection systems (IDS) like Snort [1] or Suri-
cata [2] are signature-based as they use a pre-defined set
of attack signatures to detect attacks. They can find these
attacks with high precision, however, they are limited to
well-known attacks.

Second, machine learning based approaches (see e.g.
[3]–[6]) use classifiers like neural networks or random
forests. They are trained on data containing attacks and
normal instances, usually on a flow basis. These classi-
fiers often achieve good results on benchmark datasets.
However, the model is trained only on those attack types
that are present in the training data. Furthermore, it is
questionable whether the learned models generalize to
new networks. In [7], the authors show that this is not
the case, i.e. the model is overfitted to the network
used during benchmark construction. This makes it nearly
impossible to use this approach in real-live scenarios, as
one would need training data collected from the target
network including a broad range of attack types to be
learned.

The third approach is anomaly detection, or, more
specifically, one-class classification. The idea is to train a
model on normal-only data (specific to a network), and to
use this model to find traffic patterns that deviate from the
previous normal behavior. This approach has the benefit
that it is in principle possible to detect new kinds of
attacks, if they result in network usage that differs from
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the normal behavior. Furthermore, the approach can be
applied in practice, assuming that we can collect attack-
free training data that is representative for the normal
behavior of the network.

Many types of attacks, however, cannot be detected
by looking at each flow individually, as they manifest
as collective anomalies [8]. The typical approach used
in network datasets is to provide features that aggregate
data from multiple flows, i.e. the number of connection
to the same host within the last 20 seconds. However,
these is typically only a small amount of hand-crafted
features which is rather generic and might miss interesting
aggregated statistics. For example, a high number of
connections from server X as well as a high amount of
traffic over port P might be unsuspicious on their own,
while the combination (X,P ) within a short time interval
might indicate an attack.

Recent approaches [9], [10] define such aggregations
in a combinatorially high-dimensional space more flexible
and adapted to the target network. Multidimensional anal-
ysis is a versatile tool to reach this goal. Multidimensional
data consist of several independent dimensional attributes
(or dimensions) and one or several dependent metric
attributes (or metrics), such as counts for given combi-
nations of dimension values. Such data can be efficiently
stored and processed in data warehouses as OLAP (online
analytical processing) cubes, or data cubes for short [11].
Using the OLAP model, we can for example look at the
traffic of a single host, the traffic in a subnet, the https
traffic of a host, the https traffic in a whole subnet, etc.
OLAP allows to filter and aggregate over all possible
combinations of dimensions.

A data cube with n independent dimensions can be
understood as an n-dimensional array. For n ≤ 3 dimen-
sions a literal visualization as an n-dimensional hypercube
might in principle be possible (although this would not
account for aggregations), whereas for n > 4 the human
mind is not capable of understanding direct visualization,
thus calling for alternative approaches. Different methods
for visualizing data cubes have been proposed, e. g., using
heat maps, scatter plots [12]–[14], or radial tree layouts
[15].

Anomalies detected by our method could have different
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causes: 1) an attack, 2) a change in the behavior of a
device or a human, 3) a reconfiguration of the network,
or 4) a too narrow model for normality. To distinguish
between these cases, a human operator is needed. To be
able to understand the anomaly scores related to high
dimensional OLAP cubes, good visualization techniques
are required.

In the following we present a visualization approach for
data cubes used for anomaly detection in security-relevant
network traffic data streams. Our approach provides dif-
ferent views on the data by combining different kinds of
diagrams and charts, which are linked to each other to
allow consistent filtering of data. The aim is to give an
overview of high anomaly scores in order to facilitate the
detection of both critical anomalies and false positives.

Visualization dashboards are a central component of
SIEM (security information and event management) sys-
tems, using bar charts, heat maps, and other types of
diagrams [16]. Multidimensional visualization methods
like parallel coordinates have also been applied to network
traffic analysis [17], [18]. The novelty of our approach
consists of the application of different visualization meth-
ods to OLAP cubes, enabling 1) the efficient filtering
and aggregation of combinations of attribute dimensions,
and 2) the computation of anomaly scores from normality
models specific to individual cells of the cube.

II. DATA CUBES FOR ANOMALY DETECTION

In this section, we will describe our anomaly detection
approach more detailed. First, we formally define cubes
and related terms. Then we describe our anomaly model,
and finally the data used in the following sections.

A. Formal Definition

Assume we are given multidimensional data with inde-
pendent dimensional attributes (dimensions) A1, . . . , An,
a single metric attribute (metric) M , and a relation R that
attributes a metric value m to all tuples (a1, . . . , an) of
values of the n dimensions. It is further assumed that the
dimensional attributes are finite and of nominal, ordinal,
or binned cardinal scale, i. e., have discrete values Ai ∈
{ai1, ai2, . . . , aimi

}. A cell is a tuple c = (a1, . . . , an)
with each ai being either a specific dimension value aij
or ∗, meaning “all”. The metric value m(c) of each cell
is the sum of the metrics of all tuples of the relation R
that match the cell pattern. The cube is the set of all cells
ci for relation R with their metric values m(ci).

Any cell with specific values in all dimensions is a
base cell, while all other cells (having at least one ∗) are
aggregate cells. The single cell (∗, . . . , ∗) is the apex cell.
A cuboid consists of all cells with a common pattern,
e. g., for n = 3 the cuboid (A1, ∗, A3) consists of all
cells with specific values for dimensions A1, A3 and ∗
for dimension A2. A cuboid is thus a subset of the cube.
Child and parent relations, which can be defined for cells
and cuboids, are not relevant for this work.

B. Anomaly Score

We now assume that the dimensions of a cube represent
features relevant for network traffic, such as IP addresses,
ports, or network protocols, and the metric counts events
(connections or packets) with specific combinations of
dimension values within a given time slice.

For each cell of the training data cube that meets an
iceberg condition, e. g., that contains a minimum number
of event counts, a normality model is built. A simple
normality model is, e. g., given by a normal distribution
of event counts over time slices, i. e., by assuming that
e ∼ N(µ, σ2), where e is the event count, ∼ reads
“is distributed as”, and N(µ, σ2) represents the normal
distribution with mean µ and variance σ2. More advanced
models are of course possible.

During inference, the event counts within a given cell of
the live data are compared to the normality model. Staying
with the normal distribution model introduced above, the
anomaly score is then computed as

s = min

(
|e− µ|
σ

, 10

)
, (1)

where c is the event count for a given cell, µ is the mean
and σ the standard deviation of the normality model for
that particular cell. s can be understood as the number of
standard deviations the event count differs from the mean
of the normality model; for practical purposes s is limited
to s ≤ 10. The anomaly cube consists of all cells with
the anomaly score s as a new metric. Anomaly cuboids
are defined accordingly. Further details and evaluations of
our approach are explained in [10].

C. Data Preparation

As a demonstration we apply our method to the UNSW-
NB15 data set, which consists of real network flow and
packet data with normal traffic and labeled attacks [19]–
[21]. The following seven dimensions have been selected
from the data set (original name in parentheses): source
IP (srcip), destination IP (dstip), source port (sport), des-
tination port (dsport), network protocol (service), network
transport (proto), argus transaction state (state).

The UNSW-NB15 data are first divided into 20 min
time slices. The data of each time slice are then cubed
with the above-named dimensions and the event count
per time slice as metric attribute. An iceberg condition
is applied, sorting out cells with too few counts. For
training the normality models the time interval from 06:00
to 12:00 on 2015-02-18 has been used, corresponding to
18 cubes (6 × 3 time slices à 20 min). Events labeled as
attacks have not been used for training. For inference,
i. e., for creating the anomaly cube, the single time slice
from 12:00 to 12:20 on the same day, 2015-02-18 has
then been used. For each cell that has a normality model
the anomaly score is computed as defined above.



Figure 1. User interface with four components: filters, parallel coordinates diagram for the current cuboid, choice of different charts
(bar chart, heat map, modified box plot, the latter of which is shown in the figure), legend for the colormap. Filters are applied to

the dimensions source IP and network transport, while all other dimensions are aggregated, as indicated by the asterisk ∗.

Figure 2. Parallel coordinates diagram for the base cuboid of the anomaly cube, as shown after reading the data.

III. VISUALIZATION OF DATA CUBES

For the visualization of the outlier cubes we devel-
oped a web application based on TypeScript, React, and
Plotly.js. The user interface of the frontend consists of
four components (cf. Fig. 1): a list of adjustable filters,
a parallel coordinates diagram giving an overview of the
current cuboid, a choice of different charts (bar chart, heat
map, modified box plot, see below), and a legend for the
common colormap which is used in all diagrams. The
first three components are connected in a way that user
interactions in one component influence the data displayed
in the other components; for details see Sec. III-C below.

The backend consists of the main control component
and a data service, which reads the data (i. e., the out-
lier cubes) and provides specific views on the data as
requested by the frontend components. For demonstration
UNSW-NB15 data are pre-processed as described above

and then loaded from CSV files.

A. Parallel Coordinates
Initially the base cuboid (A1, A2, A3, . . . ) is displayed

by means of a parallel coordinates diagram (cf. Fig. 2).
Parallel coordinates provide a method for visualizing
multivariate or multidimensional data by providing one
vertical axis for each dimensional attribute and connecting
values across the axes according to each cell [22]. Due
to the iceberg condition only a small number of cells
with high packet counts is shown. The line connecting
the question marks ? represents a default cell, which
aggregates data that would otherwise be lost due to the
iceberg condition (details will be published elsewhere).

The color of each line connecting the axes indicates
the anomaly score (cf. Eq. 1) of the corresponding cell,
according to the colormap shown by the legend at the
bottom right of Fig. 1 (from green for s = 0 to red for



Figure 3. Heat map (left) and modified box plot (right) for the dimensions source IP and network transport, with the latter filtered
to TCP for the modified box plot (cf. text for further explanations). For the heat map, only every second vertical axis label is

printed due to lack of space. The box of the modified box plot displays mean and standard deviation of the normality model, the
whiskers two standard deviations, and the colored dot the event count of the current cell.

s = 10). The high anomaly scores for almost all cells can
be considered as false positives, since the combinations
of dimension values in the base cuboid are very specific.

B. Bar Chart, Heat Map, and Modified Box Plot

In the following we illustrate a typical workflow from
an security operator’s view. First we define a loose dimen-
sion as a dimension that is not aggregated and has more
than one possible value after filtering. An example can be
seen in Fig. 1, where source IP is a loose dimension with
more than one possible value, whereas network transport
has only one possible value and all other dimensions are
aggregated.

Step 1: After setting the first filter we have only one
loose dimension, which is by default displayed as a bar
chart in the charts component, with the height and color of
each bar corresponding to the anomaly score (not shown
here). This can give a first indication of single abnormal
values of certain dimensions. We can further filter the
dimension to a range of interesting values.

Step 2: By adding a second filter we have two
loose dimensions, which can be displayed as a
heat map, visualizing the anomaly score by color
in dependence of two dimensions. An example is
given by Fig. 3 (left) for the anomaly cuboid
(source IP, network transport, ∗, ∗, ∗, ∗, ∗), where abnor-
mal cells are found, e. g., for the IP range 175.45.176.*
in combination with TCP and UDP.

Step 3: Filtering network transport to the single value
TCP and source IP to the interesting range 175.45.176.*,
we have only one loose dimension left (source IP). Now
a modified box plot can be displayed, which allows to
compare the event counts of cells with the corresponding
normality models. For the given example this is shown
in Fig. 3 (right). The box plot is modified in the sense
that the mean and standard deviation are shown instead
of the median and quartiles; the whiskers show twice the
standard deviation. The circle represents the event count
of the current cell; it is colored according to the anomaly
score.

Result: From the modified box plot it becomes obvious
that the number of TCP connections from 175.45.176.1
is approximately eight standard deviations larger than the
mean of the corresponding normality model. The operator
can then look further at the specific host and network
protocol to decide if this is critical.

C. Filters and User Interaction

The filters, parallel coordinates, and charts components
are connected in order to allow coherent user interaction.
Obviously changing the filters influences the selection of
data being displayed. The other way round, dimensions
can be filtered by interactively selecting single values or
value ranges in either the parallel coordinates diagram,
the bar chart, or the heat map. The heat map allows 1D
and 2D selections, i, e., selections of values within one or
both displayed dimensions.

As an example, Fig. 1 shows the user interface for the
choice of filters described in Sec. III-B for the modified
box plot. The filters are visible in the parallel coordinates
diagram, with all other cells grayed out. Detailed informa-
tion on displayed data is provided via mouseover boxes,
e. g., for the normality model shown in the modified box
plot. Furthermore, the order of dimensions in the parallel
coordinates diagram can be changed by dragging an axis
to a different position, and the sorting of the values of a
dimension can be reversed by the blue arrow above each
axis. Finally, filters can be deactivated or removed by the
eye and x buttons, respectively.

IV. CONCLUSION

In conclusion we have presented a visualization ap-
proach for cubed data with the application of anomaly
detection in network traffic data. Anomaly scores are com-
puted based on normality models specific to individual
cells of the cube. These anomaly scores are visualized by
means of parallel coordinates, bar charts, heat maps, and
modified box plots, with filters allowing the user to select
specific cuboids. For demonstration we have applied our
approach to the UNSW-NB15 data set.



Figure 4. Parallel coordinates diagram for the full anomaly cube, with argus transaction state filtered to ECO.

One point of discussion was the amount of data that
should be shown in the parallel coordinates diagram. An
alternative approach would be to show the full cube, i. e.,
all possible cells regardless of the iceberg condition, and
to highlight the selection defined by the filters (cf. Fig. 4),
which would provide much more information on the data
set in the parallel coordinates diagram. For large data sets,
however, it is not feasible to keep all cells when building
normality models.

Our current work is focused on the integration of the
visualization approach into a SIEM (security information
and event management) system which should then be
applied to real data streams. When attached to a SIEM
system, our visualization approach provides a visual rep-
resentation of the event data within a certain time frame,
emphasizing anomalies. Equipped with this view, SOC
(security operations center) employees can quickly assess
whether a part of the network needs closer inspection
and subsequent countermeasures, or find an overview
of affected systems after discovering a security breach
through different means. Possible scenarios include port
scans, which would be visible in a heat map of destination
IPs and port numbers as one or more IP-columns showing
mostly red cells, or exfiltration processes, which would be
represented in the parallel coordinates diagram as a red
line from an internal source IP to an external destination
IP and possibly an application protocol like FTP used for
data transfer.

Further possible research directions include accounting
for dimension hierarchies (as in IP addresses) and con-
ducting a usability study of our visualization approach.
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