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Abstract—We present a feedback-corrected optimal scheduling
approach to reduce the demand of electrical energy of batch pro-
cesses, exemplified at the sand preparation in foundry. The main
energy driver in the exemplary foundry is the idle time of the
batch-wise working sand mixers. In this novel approach, we use
linear integer programming to minimize the demand of energy of
the sand mixers by scheduling the batches in real-time. For the
optimization we use a physical model of the sand preparation,
which takes dwell-times of the processes as dead-time systems into
account. In this paper, we present the steps to make the optimal
scheduling approach applicable for the production process. The
application at the real production plant proves the performance
of the suggested approach. Compared to the conventional control,
the feedback-corrected optimal scheduling approach leads to an
reduction in energy consumption of approximately 6.5 % without
modifying the process or the aggregates.

Index Terms—optimal scheduling, real-time, application, linear
integer programming, dwell-time, soft constraint, batch-wise
parallel process, foundry

I. INTRODUCTION

Using energy efficiently is a key competitiveness factor in
energy-intensive industry [1], [2]. Capacity utilization and en-
ergy costs in Germany are high compared with other countries
[3]. Thus, the consumption of electrical energy is important to
satisfy the increasing requirements of environmental legisla-
tion and to reduce costs. Green sand casting is energy intensive
and preparing the moulding sand is a important energy driver.
A study on the energy consumption in a foundry’s sand
preparation demonstrates possible energy savings of 10 %.
We expect a comparable potential at the exemplary foundry
Heinrich Meier Eisengießerei GmbH & Co. KG in Rahden.

The sand preparation produces sand for the moulding ma-
chine. At Heinrich Meier Eisengießerei GmbH & Co. KG two
mixers produce sand parallel and batch-wise. Attached to each
mixer is one hopper for storing the sand after processing.
Furthermore, the machine hoppers for storing the sand before
moulding are located in the plant. The sizing of the hoppers
leads to a trade off between space requirements in the plant
and hopper size. In the exemplary foundry, these hoppers are
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small and can only store approximately to two batches of sand.
Due to the small size of the hoppers, the mixers have to react
fast on fluctuations of the sand demand and mixer idle times
occur.

The actual rule-based control system fills all hoppers to their
limit. Energy cost, especially idle energy are not considered.
Further, the dwell-time between dosing the sand for the mixing
process and filling the prepared sand in the moulding machine
is long. Therefore, optimal scheduling of the operation time
of the mixing machines promises great potential for reducing
energy consumption.

Related work for scheduling complex industrial processes
with large dwell-times and switching process variables aims
at offline production planing. A formalism for scheduling
the production planning in foundry is explained in [4]. An
optimization approach for constraint scheduling in steelmaking
processes is shown in [5]. Recent papers [6], [7] present
mixed integer programming approaches for scheduling parallel
industrial processes. Theoretical work on model predictive
control for switching process variables and average dwell-
times mostly bases on [8]. Other recent approaches han-
dle switching processes with rounding strategies [9] or use
stochastic approaches for energy efficient switching [10].

The disturbance impacts strongly on the optimization.
Therefore, updating the process variables and solving the
optimal scheduling problem in real-time is preferred. This
leads to the novelty of this approach, the real-time application
of feedback-corrected optimal scheduling. The process model
bases on the integrated modelling approach represented in
[11]. The application at the foundry’s sand preparation leads
to a reduction in energy consumption of approximately 6.5 %
without modifying the process or the aggregates.

The paper is structured as follows: In section II, we illustrate
the conventional control system with mixing sequence and
transport condition. Section III introduces the mathematical
representation of the optimal scheduling problem. The pre-
liminary examinations before applying the optimal scheduling
approach at the plant are shown in section IV. In section V
we present the results of the test at the production plant.



II. CONVENTIONAL CONTROL SYSTEM

The sand preparation processes the sand for the moulding
machine. The moulding sand properties are adjusted in the
sand mixers. Before mixing, the different components, like
water, have to be dosed. Directly after mixing, the sand
is stored in the mixer hoppers and can be transported via
transport belts to the machine hoppers, in which the sand is
buffered for the moulding machine. The conventional control
system aims at maximum filling both mixers and machine
hoppers, see Fig. 1. Whereby the filling of the machine
hoppers is prioritized. In the mixing sequence, both mixers
are filled batch-wise via one common scale, see Fig. 1 (top).
The sequence is deterministically controlled in seven steps. As
a result, the mixers always work alternately. When the mass
in a mixer hopper is above the upper bound, the process stops,
see step two or five, respectively. The scale buffers the next
batch and the related mixer runs in idle mode. Directly when
the mixer hopper can store a batch, the mixing process begins.
While the transport condition is fulfilled, the belts convey the
mixed sand into the machine hoppers, see Fig. 1 (bottom). A
scraper splits the sand into the two hoppers. With full hoppers,
the sand extraction from the mixer hoppers stops.
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Fig. 1. Schematic moulding sand process (left side) and conventional deter-
ministic control system (right side). Mixing sequence with scale, mixers and
hoppers (top). Transport condition with belts and machine hoppers (bottom).

III. OPTIMAL SCHEDULING PROBLEM

The dosing, mixing and transport processes are modelled as
discrete dead-time systems. The detailed process description,
modelling approach and problem formulation are given in [11].
For the list of inputs, states, slacks and parameters, see Table I.
The specific process in the exemplary foundry requires starting
the mixers after dosing the sand in the scale. During the start
up time of the mixers, the sand remains in the scale. If the
mixers are in state OFF before mixing, an additional time
delay for dosing of one step is necessary. Switching the mixers
states xM◦ with the input uM◦ and separating the mixers starts
sMS◦ by constraint pushing leads to:

xM◦(k+1) = xM◦(k) + uM◦(k) (1a)
uM◦(k)− sMS◦(k) ≤ 0. (1b)

TABLE I
VARIABLES, INPUTS, STATES, SLACKS, PARAMETERS, BOUNDS AND

WEIGHTS

Variable . Explanation Unit
k time-step –
K prediction horizon –
◦ scale and mixer abbreviations {1, 2}

Input
uS◦ dosing start scale {0, 1} –
uM◦ switch mixer state {−1, 0, 1} –
uT◦ OFF, ON extraction belt {0, 1} –
State
m̃S◦,i counter i for the normalized masses of the

dosing process {0, 1}
–

xM◦ mixer state {0, 1} –
m̃M◦,j counter j for the normalized masses of the

mixing process {0, 1}
–

mMH◦ mass in mixer hopper kg
mT,n counter n for the transported mass kg
mH mass in machine hopper kg

∆mHD mass extracted from the machine hoppers kgs-1

Slack
sS◦ buffering sand in scale {0, 1} –
sMS◦ mixer start {0, 1} –

sMH◦,LB lower bound mixer hopper –
sMH◦,UB upper bound mixer hopper –
sH,LB lower bound machine hopper –
sH,UB upper bound machine hopper –

. .Parameter Size
∆t duration of one time step 10 s
TS time steps for dosing 6 –
TM time steps for mixing 14 –
cS◦ mass per batch 6000 kg
TT time steps for transporting 2 –
cT◦ extracted mass from mixer hoppers

per time step
58∆t kg

Bound
mMH◦,UB upper bound mixer hopper 12000 kg
mMH◦,LB lower bound mixer hopper 0 kg
mH,UB upper bound machine hopper 19000 kg
mH,LB lower bound machine hopper 12000 kg
Weight
wS◦ buffering sand in scale -10-2 –
wMS◦ start mixer 2025 –
wMI◦ idle time mixer 75∆t –
wMH◦ slacks mixer hopper [102102] [– –]
wH slacks machine hopper [102103] [– –]



The extended model for the dosing process reads

m̃S◦,1(k+1) = uS◦(k) (2a)
m̃S◦,i(k+1) = m̃S◦,i−1(k), i = 2,· · · , TS − 1 (2b)
m̃S◦,TS(k+1) = m̃S◦,TS−1(k) + sS◦(k) + sMS◦(k) (2c)

and the mixing process denotes

m̃M◦,1(k+1) = m̃S◦,TS(k)− sS◦(k)− sMS◦(k) (3a)
m̃M◦,j(k+1) = m̃M◦,j−1(k), j = 2,· · · , TM. (3b)

The mixer hoppers are modelled by

mMH◦(k+1) = mMH◦(k) + cS◦m̃M◦,TM
(k)

− cT◦uT◦(k).
(4)

The mass extraction from the mixer hoppers and the mass
transport reads

mT,1(k+1) =
∑

◦∈{1,2}
cT◦uT◦(k) (5a)

mT,n(k+1) = mT,n−1(k), n = 2,· · · , TT. (5b)

The machine hopper is modelled by

mH(k+1) = mH(k) +mT,TT
(k)−∆mHD(k). (6)

The optimal scheduling problem contains costs for mixing,
hopper levels and buffering sand in the scale. For the list
of bounds and weights, see Table I. The costs for mixing
processes include starting costs

hMS =
∑

◦∈{1,2}
wMS◦sMS◦(k)

s.t. sMS◦(K) = 1

(7)

and costs for idle times

hMI =
∑

◦∈{1,2}
wMI◦

[
xM◦(k)−

∑TM

j=1
m̃M◦,j(k)

]
s.t.

∑TM

j=1
m̃M◦,j(k) ≤ xM◦(k)

m̃S◦,TS
(k) ≤ xM◦(k).

(8)

Exceeding the mixer and machine hopper bounds is punished
with a soft constraint formulation by

hMH =
∑

◦∈{1,2}
wMH◦

[
sMH◦,LB(k)
sMH◦,UB(k)

]
s.t. mMH◦,LB − sMH◦,LB(k) ≤ mMH◦(k)

mMH◦,UB + sMH◦,UB(k) ≥ mMH◦(k)

sMH◦,LB(k), sMH◦,UB(k) ≥ 0,

(9a)

hH = wH

[
sH,LB(k)
sH,UB(k)

]
s.t. mH,LB − sH,LB(k) ≤ mH(k)

mH,UB + sH,UB(k) ≥ mH(k)

sH,LB(k) sH,UB(k) ≥ 0

mH(0)−mH(K) ≤ 0.

(9b)

Buffering sand in the scale is penalized by

hS =
∑

◦∈{1,2}
wS◦sS◦(k).

s.t.
∑

◦∈{1,2}

[
uS◦(k) +

∑TS

i=1
m̃S◦,i(k)

]
≤ 1.

(10)

The economic cost function is completely linear:

min
Inputs,
Slacks
∀k≤K

J = hMS + hMI + hMH + hH + hS

s.t. (7− 10).

(11)

IV. PRELIMINARY EXAMINATION

The aim of the optimization is reducing the energy con-
sumption of the mixing machines. The optimization problem
takes the process restrictions as well as the sand extraction
from the machine hoppers into account. We focus on reducing
the energy consumption by optimizing the trade-off between
idle energy and the consumption during mixers starts. Idle
times occur when the mixers are in state ON without pro-
cessing a batch. Therefore, the process strategy is scheduling
the starts of dosing and the transitions, for example between
dosing and mixing, to minimize the costs.

In the real production plant two machine hoppers store the
sand for the moulding process. For every moulding process,
sand is required from both hoppers. The sand extraction
from the hoppers is proportional to each other. Thus, both
hoppers are modelled as a common one (6) and a subordinated
control regulates the even sand splitting to both hoppers.
Upper and lower bounds of the modelled machine hopper are
set to 19000 kg and 12000 kg, respectively. Due to process
stability, the upper bounds of the mixer hopper masses are
set to 12000 kg and the lower bounds are set to 0 kg, see
Table I Bound. The sand extraction from the common machine
hopper considered as a disturbance, has a strong impact on
optimization, is measured in the time step k = 0 and is fix
for all steps of the optimization horizon. Responding to the
changing disturbance, the optimization has to be solved in
real-time.

For feedback-corrected optimal scheduling the state feed-
back has to be determined in real-time. The model presented
in [12] is used for estimating the sand masses in all hoppers
during extraction and filling. We use soft constraint bounds
to handle uncertainties of the estimated hopper masses (9a,
9b). The demand of sand of the moulding machine fluctuates
for example with the production program and interruptions.
For example, a moulding model change is performed approx-
imately 20 times per day. This can lead to a different sand
demand, because of changes in mould cavity, casting time
and production interruptions resulting from start-up problems
with the model. Furthermore, process interruptions are not pre-
dicted. Therefore, the actual measured value of the moulding
sand demand is assumed to be constant over the prediction
horizon.

While a mixer is waiting for a batch, idle energy occurs.
Thus, buffering sand in the scale is preferred and weighted
negatively in the objective function (11), see Table I Weight.



The costs for the mixers starts represent the start up energy
and wear (7). Safe plant behaviour under failure is ensured by
existing plant safety systems. These intercept all errors which
could lead to damage of the plant, e.g. overfilling the hoppers.

The calculation cost is reciprocal to sample time and, thus to
the number of states resulting from the dead-time systems for
dosing TS, mixing TM and transport TT, see Table I Parameter.
This leads to a trade-off between calculation cost and reaction
on changes of the disturbance. In comparison to the initial
plant test results, shown in [11], this trade-off is resolved with
a less sample time of 10 s. The number of states of the dead
time systems is adjusted accordingly.

Based on [11], we formulate the optimal scheduling problem
in matlab R2020b and use YALMIP [13] for the interaction
with the solver IBM CPLEX ILOG v12.10. For the optimal
scheduling approach, the following preliminary examinations
are the offline feedback-corrected optimal scheduling (subsec-
tion A) and counting the switch-off suggestions in an open-
loop simulation parallel to the conventional control (subsec-
tion B). Both serve as preparation for the application of
feedback-corrected optimal scheduling in real-time test at the
production plant.

A. Offline feedback-corrected Optimal Scheduling

Solving the optimal scheduling problem cyclically every
time step and updating the states and the disturbance leads to
feedback-corrected optimal scheduling. The prediction horizon
of every optimization is 200 steps (approximately 33 minutes).
The sample time for real-time capacity is 10 s, see Table I Pa-
rameters. The feedback states are error-free and originate from
the simulated plant model.

Similar to the real production plant, the moulding sand
demand out of the machine hopper (disturbance) fluctuates
between the demand for producing moulds (marker A) and
zero, during production stops (sectors B), see Fig. 2 (top). The
demand is mostly in range of 70 kgs-1 (marker A) and thus
corresponds to production at medium speed, e.g. when casting
spheroidal graphite iron. Previous tests show a high calculation
effort at this demand. Data pre- and post-processing need
below 2.5 s. Therefore, the calculation time for solving the
optimal scheduling problem is capped at 7.5 s (limit), see
Fig. 2 (second). Mostly the problem converges before the limit
is reached, in all other cases convergence is almost achieved. In
approximately 40 % of the time steps, convergence is achieved
below 6 s, see Fig. 2 (second, sectors C). Therefore, solving
the optimal scheduling problem at the plant is also expected
to converge in real-time.

The masses in the hoppers are standardised to the upper
bound (1.0) and lower bound (0.0), see Fig. 2 (middle). Both
masses in the mixer hoppers mMH{1,2} fluctuate in the entire
range between their bounds (0.0 to 1.0). The mass in the
machine hoppers mH varies in an interval of approximately
72 % of the entire range (0.25 to 0.97), see Fig. 2 (middle,
sector D). The range below 0.25 is not used, due to the
disturbance going to zero (top, sectors B).
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Fig. 2. Cyclically solved offline feedback-correceted optimal scheduling for
180 steps with a prediction horizon of 200 steps. From top to bottom:
Moulding sand demand (disturbance), calculation time, standardized masses
in the hoppers, starts of dosing and mixers states.

The starts of dosing and the mixers states are OFF (0)
and ON (1), see Fig. 2 (forth and bottom). Sand dosing is
performed blocks-wise by consecutive dosing for each mixer,
see Fig. 2 (forth, sectors E and E*). Thus, the mixer switch off
block-wise, see Fig. 2 (bottom, sectors F and F*). Therefore,
the offline simulation shows a great potential for energy
savings.



B. Switch-off Suggestions

Running feedback-corrected optimal scheduling, parallel to
the conventional control, and counting the switch-off sug-
gestions allows an evaluation before applying the scheduling
approach at the production plant. Inputs are the measured
disturbance as well as the measured and estimated states
from the real production plant. The configuration for optimal
scheduling is the same as in the previous simulation.

The optimal scheduling runs for 10 hours in 10s time steps
during production times with high and low moulding sand
demand. During high demand, the disturbance is in range of
approximately 73 kgs-1 and also less production interruptions
occur. Analysing the switch-off suggestions results in 69 sug-
gestions in the approximately 2900 steps. This corresponds to
2.38 % of steps with a recommendation for switch-offs. During
low demand the disturbance is approximately 68 kgs-1 and
more interruptions appear. Counting the switch-off suggestions
results in 51 suggestions in approximately 550 steps (9.27 %).
This indicates high energy saving potential, especially for
low sand demand. Counting the switch-off suggestions proves
the potential for energy savings from the offline optimal
scheduling.

V. APPLICATION RESULTS

The feedback-corrected optimal scheduling problem is
solved cyclically every time step in real-time and applied at
the production plant in a 4-hour test at a typical production
day. The prediction horizon is 200 steps and the disturbance
is measured in step k=0 and fixed for the prediction horizon.

During the entire test period the reduction in energy con-
sumption is approximately 6.5 % and real-time capacity is
reached. The mixers consume approximately 140 MWh/a. At
this level of consumption, approximately 9.1 MWh/a can be
saved. From the 4-hour test, two excerpts each 210 steps long
are shown. The first excerpt discusses the advantage in energy
consumption and the second excerpt aims at the computation
time.

A. Energy consumption

The moulding sand demand fluctuates due to production,
see Fig. 3, (top, sector A). The maximum sand demand is
below 72 kgs-1 (line B) and long production interruptions
occur (sector C). Overall, this is a medium sand demand, e.g.
when casting spheroidal iron.

All masses in the hoppers are standardised to the upper
bound (1.0) and lower bound (0.0), see Fig. 3, (second). The
sand mass in the machine hoppers is combined into one mass
mH. This mass varies in the entire range between the bounds
(0.0 to 1.0). In comparison to the mass in the machine hoppers,
the mass in the mixer hoppers mMH{1,2} fluctuate in range of
approximately 70 % of their bounds (0.0 to 0.7), see Fig. 3,
(second, sector D). This leads to a potential of 0.3 (0.7 to 1.0).
The difference to the simulation could result from the varying
moulding sand demand and the production interruptions, see
Fig. 3, (top, sectors A and C).
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Fig. 3. Excerpt energy consumption (210 steps) from the plant test with a
prediction horizon of 200 steps. From top to bottom: Moulding sand demand
(disturbance), standardised masses in the hoppers, sand transport, starts of
dosing and mixers states.

The sand transport, starts of dosing and the mixers states are
OFF (0) and ON (1), see Fig. 3 (middle, forth and bottom).
In response to the changing moulding sand demand, the states
of the transport belts switch with high frequency, see Fig. 3,
(middle). This can be seen particularly well when comparing
sector E (middle) and sector A (top). Dosing of sand in scale
is executed consecutively, see Fig. 3, (forth, sectors F and F*).
Fluctuations in sand demand lead to locking the dosing starts
of the next batch until the hopper can store this batch. The
locking is caused by rudimentary safety functions of the plant,



which protect the hoppers from overfilling. The triggering of
the safety functions is very inaccurate and cannot be adjusted.
Therefore, in some cases, the signal to start dosing is held
for several time steps, see Fig. 3, (forth, marker G). This
could explain the potential in mixer hopper mass (second,
sector D). The mixers switch off block-wise, see Fig. 3
(bottom, sectors H and H*). While a mixer is switched-off,
the scale doses sand only for the second mixer, compare
sectors F with H and F* with H*, respectively. The start-
up time for switching on the mixers is two time steps, see
Fig. 3 (bottom, sectors I and I*). We assume, the conventional
control would produce the same amount of sand as the optimal
scheduling in the test. The reduction in energy consumption of
the optimal scheduling approache is the sum of saved energy in
sectors H and H* (mixers are switched off) minus the start-up
energy demand in sectors I and I* compared to the energy
consumption of the conventional control (idling instead of
switching off). The reduction in energy consumption in this
excerpt is approximately 12.8 %.

B. Computation time

Previous examinations show high calculation time when the
disturbance is very high. Therefore, the computation time is
examined for another interval of the same test with a length of
210 steps. The moulding sand demand is high, mostly above
70 kgs-1 and only short production interruptions occur, see
Fig. 4, (top, line A and sector B). Thus, the mixers run without
possible switch-off or idle.

Like the test results from the excerpt energy consumption,
the mass in the machine hoppers mH varies in the entire range
(up to 1.0), see Fig. 4 (middle). Uncritical undercutting of the
lower bound (sectors C) show the necessity of formulating
soft constraints for the hopper bounds. The masses in the
mixer hoppers mMH{1,2} vary in an interval of approximately
85 % of the entire range (0.00 to 0.85), see Fig. 4, (middle,
sector D). In comparison to Fig. 3 (second, sector D), the
increase of the interval of 0.15 (from 0.70 to 0.85) could be an
effect of the less varying disturbance. Maximum filling of the
mixer hoppers is probably not reached due to the rudimentary
safety functions of the plant (see excerpt energy consumption)
and due to very high sand demand (top).

The computation time consists of calculation time for solv-
ing the optimal scheduling problem (up to 7.5 s) and time
for pre- and post-processing (approximately 2.5 s). For real-
time capacity, the computation time must be below the sample
time of 10 s, see Fig. 4 (bottom). In approximately 60 % of the
steps the calculation takes less than 4 s, see Fig. 4, (bottom,
line G). The calculation time remains always below 7.5 s, see
Fig. 4, (bottom, line F). With a calculation time close to 7.5 s,
a nearly optimal solution is achieved. We calculate the solution
externally and send the results to the plant control system via
internet. Exceeding the limit is negligibly small and results
from the post-processing time, e.g. in case of delayed data
transmission via the internet, see Fig. 4, (sector E). Therefore,
real-time capability is proved with this excerpt.
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prediction horizon of 200 steps. From top to bottom: Moulding sand demand
(disturbance), standardised masses in the hoppers and computation time.

Overall, performing the optimal scheduling at the produc-
tion plant leads to great savings in energy consumption and
proves real-time capacity of the approach.

VI. CONCLUSION

This paper presents a feedback-corrected optimal scheduling
approach for optimizing the energy consumption of indepen-
dent parallel processes. We use a linear process model based
on dead-time systems and a linear economic cost function.
The completely linear approach has great advantages in com-
putational effort. With the economic cost function a direct
optimization of the energy consumption is possible.

Performing feedback-corrected optimal scheduling in offline
simulation promises great potential for energy savings. Sim-
ulating feedback-corrected optimal scheduling parallel to the
conventional control confirms the potential for energy savings
and suggests possible switch-offs, especially in case of low
moulding sand demand.



The production plant test results show the improvements
by the demonstrated approach compared to the conventional
control. The reduction in energy consumption in the 4 hour
test is approximately 6.5 %. Optimization and necessary
processing of the data is performed in real-time. Furthermore,
the application of the demonstrated approach contributes to
qualify optimal scheduling for industrial processes.

The demand of sand is essential for the optimization. Thus,
the energy savings could be further increased by predicting the
demand. We assume that neural networks could be suitable.

Moreover, we want to improve the pre- and post-processing.
Further improvements could be reached by adjusting the op-
timal scheduling problem or the solver settings. The environ-
mental conditions at the plant are changing over a long period,
for example due to seasons. Therefore, long-term testing would
evaluate this approach under additional conditions.

ACKNOWLEDGMENT

This research is generously supported by our partners, the
foundry Heinrich Meier Eisengießerei GmbH & Co. KG in
Rahden and the company Künkel Wagner Germany GmbH in
Alfeld. We are very grateful for this support.

REFERENCES

[1] A. Sauer and T. Bauernhansl, Energieeffizienz in Deutschland - eine
Metastudie, 2nd ed. Springer Vieweg, 2016.

[2] M. Blesl and A. Kessler, Energieeffizienz in der Industrie, 2nd ed.
Springer Vieweg, 2017.

[3] D. M. Trinowski, “Die Gießerei-Industrie in Europa und den USA - ein
Vergleich,” Giesserei, vol. 103, no. 8, pp. 58–63, 2016.

[4] R. F. Teixeiri Jr., F. C. Fernandes, and P. N. A., “Binary integer
programming formulations for scheduling in market-driven foundries,”
Computer & Industrial Enginerring, vol. 59, no. 10, pp. 425–425, 2010.

[5] J. Li, P. Duan, H. Sang, S. Wang, Z. Liu, and P. Duan, “An efficient
optimization algorithm for resource-constrained steelmaking scheduling
problems,” IEEE Access, vol. 6, pp. 33 883–33 894, 2018.

[6] Z. Zhao, S. Liu, M. Zhou, and A. Abusorrah, “Dual-objective mixed
integer linear program and memetic algorithm for an industrial group
scheduling problem,” IEEE/CAA Journal of Automatica Sinica, vol. 8,
no. 6, pp. 1199–1209, 2021.

[7] D. Han, Q. Tang, Z. Zhang, and J. Cao, “Energy-efficient integration op-
timization of production scheduling and ladle dispatching in steelmaking
plants,” IEEE Access, vol. 8, pp. 176 170–176 187, 2020.

[8] M. A. Müller, P. Martius, and F. Allgöwer, “Model predictive control
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