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Abstract—Flatness-based feedforward control is an 

approach for combining fast motion with low oscillations 

for nonlinear or flexible drive systems. Its desired 

trajectories must be continuously differentiable to the 

degree of the system order. Designing such trajectories, 

that also reach the dynamic system limits, poses a 

challenge. Common solutions, like Gevrey functions, 

usually require lengthy offline calculations. To achieve a 

quicker and simpler industrial-suited solution, this paper 

presents a new online trajectory generation scheme. The 

algorithm utilizes higher order s-curve trajectories 

created by a cyclic filtering process using moving average 

filters. An experimental validation proves the capability 

as well as industrial applicability of the presented 

approach for flexible structures like stacker cranes. 

Keywords: flatness-based control; flexible structure; online 

trajectory generation; moving average filter; increasing 

continuous differentiability; dynamic trajectories 

I.  INTRODUCTION 

In the last decades the intralogistics sector has grown 

significantly due to the e-commerce boom. In 2017 the top 20 

world-wide suppliers of material handling systems (e.g. 

stacker cranes) exhibited a universal revenue growth for the 

first time in over two decades [1].  

Stacker cranes (see Fig. 1) are characterised by a tall mast 

and a load handling device, denoted LHD. The LHD can be 

moved vertically along the mast and extended outwards to 

deposit or remove elements from a rack. In this paper, belt 

driven stacker cranes are examined. Such stacker cranes 

consist of a drive motor connected to a belt via an Omega 

drive. The motor is fixed to the moving platform of the crane.  

The mast of a stacker crane is liable to oscillations 

whenever it moves, which puts a mechanical strain on the 

construction. Some form of oscillation reduction needs to be 

applied to guarantee safety during dynamic motion. 

Additionally, the LHD can only be safely extended after 

oscillations subside. There-

fore, a significant reduction 

of mast oscillations is critical 

in order to achieve a time 

efficient operation of the 

stacker crane. The maximum 

improvement can be 

achieved, if the oscillation 

reduction scheme is com-

bined with dynamic posi-

tioning of the stacker crane. 

One main difficulty in reduc-

ing mast oscillations is the 

dependency of mast eigen-

frequency on LHD height. 

Thus, a time-variant oscilla-

tion control problem results. 

If a limitation of mast oscil-

lations can be guaranteed, 

construction of lighter, less 

stiff stacker cranes becomes 

possible.   

One solution is the re-

duction of mast oscillations 

through advanced trajectory 

planning and control ap-

proaches. Many approaches have been examined, like state 

space control [2], passivity based control [3], time-optimal 

trajectory planning [3] or input shaping [4]. One increasingly 

popular option is the development of a flatness-based open-

loop control as employed in [2], [3], [5] and [6]. However, 

only [3] has validated its approach for a simultaneous motion 

of platform and LHD, thus addressing the issue of the time-

variant mast eigenfrequency. Other papers (e.g. [2], [5]) have 

included LHD motion in modelling, but not in the final 

flatness-based approach. In [2], the LHD is assumed to be at 

final height for the entire motion. Since the corresponding 

control validation does not include simultaneous motion of 

 

 

Figure 1: Single mast stacker 

crane [17] 



platform and LHD, the validity of this simplification cannot 

be judged.  

The flatness-based approach has also proven effective in 

reducing load side vibrations of any number of different 

flexible motion systems (see e.g. [4], [7], [8]). But of these 

only [4] includes simultaneous motion of two axis similar to 

the motion of platform and LHD. 

Contrarily to the cited publications, the time-variant mast 

eigenfrequency will be considered during development and 

validation of the flatness-based feedforward control scheme 

presented in this paper. 

Another important aspect of flatness-based control is the 

design of appropriate trajectories. In order to receive a 

continuous output, the desired trajectory has to have a 

number of smooth derivatives corresponding to system order 

n, making it a function of (differentiability) class Cn. For 

systems with an order higher than three, the design of such a 

trajectory is non-trivial.  

Many different types of trajectories have been explored in 

the literature, such as polynomial functions ([7]) and Gevrey 

functions ([2], [5]). Newer approaches include the use of 

classical s-curve trajectories, whose differentiability is 

increased through various means ([4], [6], [8]). This will be 

expanded upon in section III.  

This paper focuses on an additional requirement, which is 

the implementation on a real time system. This can be 

achieved through either online trajectory generation or 

reliance on offline calculations that can be accessed online 

through a look-up table or similar means.  

Online trajectory generation stipulates a generation that is 

self-contained within every control cycle, generally every 

millisecond. Also, a seamless transition from one trajectory 

to another has to be possible, meaning that no significant 

delay occurs before the start of a new motion.  

This generally requires a low computational complexity, 

which many approaches cannot achieve. In that case, 

additional offline calculations become necessary. This 

requires trajectories for every single possible motion, with 

every possible set of boundary conditions to be calculated 

offline before the control can be employed. The number of 

possible motions often consists of several hundred thousand 

or even over a million possible combinations [9]. This 

requires a deep analysis of the possible demands and time-

consuming calculations before the control can be employed. 

This aspect is rarely explored explicitly in literature, other 

than for optimization-based approaches, whose computa-

tional complexity always requires offline calculations. 

In [2] it is mentioned that online implementation should 

theoretically be possible for the presented Gevrey function-

based approach. They recommend exploration in further 

research. Yet to the authors knowledge no such follow up 

exist, leading to the conclusion that every beforementioned 

trajectory planning approach requires some form of offline 

calculation. 

This is relevant since online trajectory generation plays 

into the already existing advantage of a feedforward-based 

oscillation reduction approach. Since such an approach can 

be combined with any number of pre-existing control 

schemes, it can be integrated retroactively into many systems. 

This makes it an especially simple and industrial-suited 

approach. A requirement of lengthy offline calculations and 

analysis would negate this advantage. 

Therefore, the aim of this paper is the development of a 

flatness-based oscillation reduction scheme with online 

trajectory generation. 

The online implementation puts a constraint on the 

computational complexity, which is increased through the 

inclusion of a time-variant eigenfrequency. Therefore, a 

relatively simple multi-body modelling approach is used, in 

contrast to a continuous modelling approach based on the 

Euler-Bernoulli beam theory (see [2], [3], [5], [10]). This 

modelling is presented in section II in conjunction with the 

introduction of the test bed, which serves as an example of a 

miniature stacker crane.  

With regards to the trajectory generation, the low 

computational cost is achieved through a cyclic calculation 

approach, that distributes the cost across the entire motion, as 

presented in section III. It also makes use of dynamic s-curve 

trajectories, whose differentiability is increased through the 

use of moving average filters. 

Finally, the derived algorithm is experimentally validated 

in section IV. 

 

II. MODELLING OF THE TEST BED 

The test bed consists of a platform with an approximately 

1.2 m long mast running along a belt on a 3 m rail (see Fig. 

2). A LHD can be moved up and down the mast via a belt and 

its motor, positioned on the platform. The platform is driven 

by an Omega drive, visible in Fig. 2. The test bed was 

designed to have a realistic oscillation behaviour, meaning 

that the eigenfrequencies of mast and belt closely resemble 

eigenfrequencies of real stacker cranes. For the belt, this 

means that the stiffness of a much longer belt has to be 

approximated. Therefore, flat springs are connected to the 

belt in series on either end of the rail, as seen in Fig. 2. 

The test bed is modelled by three masses, i.e. drive motor, 

 

Figure 2: Test Bed, with the belt and flat springs highlighted in red and the 

LHD and its belt highlighted in green. 



platform and mast, which are coupled by two springs, belt 

and mast, leading to a system with order n = 6. One can 

define a theoretical motor position x1 in addition to platform 

position x2, even though the motor is located on the platform. 

The motor position is calculated only from actual motor 

rotation. The platform position additionally includes the 

influence the belt elasticity has on the position (see Fig. 3). 

The third position of interest is load position x3 , which 

describes the horizontal position of the mast head. Following 

these definitions, belt and mast oscillations can be calculated 

as the difference between x1, x2 and x2, x3 respectively. 

 

Figure 3:  Mass-spring-damper model of the test bed 

Following this modelling approach the mast is 

approximated as a massless beam with a point mass on top 

(see Fig. 4, right side), which is connected to a spring with 

stiffness c�. This simple approximation is in contrast to often 

developed continuous models based on Euler-Bernoulli beam 

theory, as applied in [2], [3], [5] and [10].  

The chosen simplification means, that only the first 

eigenfrequency is modelled. The consequences of this sim-

plification will be examined during experimental validation 

in section IV.  

Following this model, stiffness c2 can be calculated by 

viewing the mast as a beam with length h which is clamped 

on one end (see Fig. 4, left side). When a force F is applied 

to the mast head, its resulting deflection can be calculated via 

[11]: 

∆x3 = Fh
3

3EI
 , (1) 

with the mast’s Young modulus E and its second moment of 

area I. 

Applying Hooke’s law, leads to the mast stiffness c2 [11]: 

c2 = 3EI

h
3

 . (2)

Following the chosen model, the different mast masses 

have to be reduced into a single point mass at the mast head, 

as depicted in Fig. 4. This point mass must include the masses 

of the beam mbeam, the LHD mLHD and the mast head mmh. 

Only the latter enters into the resulting mass m3 unchanged. 

For mbeam and mLHD equivalent reduced point masses at the 

top of the mast (height h) have to be calculated: 

m3(hLHD) = mbeam,red + mLHD,red�hLHD	 + mmh, with (3)

mbeam,red = 
33

140
mbeam (4)

m
��,red(hLHD) = 
mLHD

4

9 �hLHD

h
�4 − 6 �hLHD

h
�5

+ �hLHD

h
�6� 

(5)

 

In (4) the mass of the continuous beam is concentrated 

into a point mass at the mast head. The factor 33/140 serves 

to keep the eigenfrequency constant through the 

transformation into an equivalent point mass system [12]. 

Equation (5) [13] reduces the mass of the LHD at current 

height hLHD into an equivalent mass at height h. 

For the resulting mass-spring system, the eigenfrequency 

can be calculated via:  

   f
mast

 �h
��	 = 1

2π
� c2

m3(h
��)
 (6) 

Since the reduced mass changes with LHD height, so does 

the frequency, leading to the earlier stated time-variant 

eigenfrequency. For this test bed the effective mass doubles, 

when the LHD is moved from the bottom to the top of the 

mast. For these LHD positions, the eigenfrequency changes 

inversely as depicted in Fig. 5. 

Similarly, the belt eigenfrequency is also time-variant, 

since belt stiffness c1 depends on platform position x2. 

Effectively, the platform splits the belt into two parts, which 

can be approximated by parallel springs, leading to an 

increased stiffness towards the ends of the belt. Each parallel 

 

          

Figure 4: Mast model, with a detailed overview of all components on 

the left and the simplified model with one concentrated point mass on 

the right 



spring consists of a segment of the belt and its flat spring 

connected in series. 

Friction force Ffric acting on the platform (see Fig. 3) is 

modelled using a non-linear Coulomb and viscous friction 

model. The system input is the motor force FM and its state 

space vector is 

 x = �x1, x�1, x2, x�2, x3, x�3�T . (7) 

This system can be expressed mathematically through the 

following three differential equations. The time dependency 

of the system states, i.e. x1(t), is not explicitly written to 

increase readability: 

m1x�1 = c1�x2	�x2 − x�	 + d1�x�2 − x�1	 + FM (8)

m2x�2 = −c1�x2	�x2 − x1	 − d1�x�2 − x�1	+ c2�x3 − x2	 + d2�x�3 − x�2	 − Ffric�x�2	 
(9)

m3�h
��	x�3 = −c2�x3 − x2	 − d2�x�3 − x�2	 (10)

This model is the basis for the flatness-based control 

approach presented in the following section. 

 

III. FLATNESS-BASED CONTROL APPROACH 

Differential flatness is a concept first introduced by Fliess 

et al. in 1992 [14]. It represents a new modelling approach for 

non-linear systems. For linear systems, it equals the property 

of controllability.  

A system is flat, if a flat output yf exists. This means that 

every state and every control variable can be expressed just 

via the flat output yf and a finite number of its derivatives. 

That leads to the following relationships for a SISO system 

x =  f �y
f
,y�

f
,y�

f
,…,y

f

�n-1	�, (11)

u =  g�y
f
,y�

f
,y�

f
,…,y

f

�n	�, (12)

where n denotes the system order. Thus, for a flat system the 

existence of a mapping between input and flat output is 

guaranteed. This transformation offers a way of inverting the 

system, without having to solve differential equations. That 

is why flatness-based approaches are often used in open-loop 

control. In theory, an oscillation free load side positioning can 

be achieved, if the load position is a flat output. An oscillation 

free desired trajectory has to be defined for the flat output and 

transformed into the corresponding reference trajectory using 

the flatness-based inverse system model. However, this 

assumes that the system model is 100 % accurate, which can 

never be achieved in practice.  

For non-linear systems, there is no analytical method that 

discerns flat outputs. A suspected flat output can be verified 

through repeated differentiation and subsequent transfor-

mation of the results into the form of (11) and (12). For each 

flat system an infinite number of flat outputs exists. 

Therefore, it is desirable to choose a flat output which has a 

physical meaning. The design of appropriate trajectories is 

simplified, if the flat output is also the system output. 

Otherwise the internal dynamics of these two outputs have to 

be modelled and considered. 

A. Flatness-based modelling of the test bed 

With regard to the stacker crane, mast position x3 is 

desired to be the flat output yf. In order for x3 to be a flat 

output of the system the damping has to be neglected from 

(8), (9) and (10). Since both mast and belt are only weakly 

damped, this is an acceptable simplification. 

From the resulting system the reference trajectories x1 and 

x�1 have to be calculated as well as the motor force FM, which 

is applied as the feedforward term. This can be achieved by 

repeated differentiation of the flat output and transformation 

of the resulting equations. Due to their time-variant nature, 

derivatives of both c1 and m3 have to be calculated as well. 

This is neglected in the following simplified version, which 

treats both parameters as time-invariant: 

FM =  
m1m2m3

c1c2

y
f

�6	

+ 
m1�m2 + m3	
c1

+ m3�m1 + m2	
c2

� y
f

�4	
+ �m1 + m2 + m3	y

f

�2	 + Ffric�t	 + m1

c1

F�
fric�t	 

(13)
  

x1 = 
 
y

f
+ �m2 + m3

c1

+ m3

c2

� y
f

�2	 + m2m3

c1c2

y
f

�4	 + Ffric(t)

c1

 (14)

x�1 = 
 
y

f

�1	 + �m2 + m3

c1

+ m3

c2

� y
f

�3	 + m2m3

c1c2

y
f

�5	 + F�
fric(t)

c1

 (15)

If m3 is modelled as time-variant, the calculation of FM 

changes to: 

 

Figure 5: Mast eigenfrequency and mass dependent on LHD height 



FM = 
m�m�m�

c1c2

y
f

(6) + m�m�m� �
c1c2

y
f

(5) + �m�(m� + m�)

c1

+ m�(m� + m�)

c2

+ 2m�m�
c1c2


4
m� �2
m� + 3m� ��� y

f

(4)

+ �m� �m� + m�
c2

+ m�
c1

�
+ 3m�m�

c1c2


m� �3
m�2 − 2m� �m� �

m� + m��3	�� y
f

(3)

+ �m� + m� + m� + m� � �m� + m�
c2

+ m�
c1

�
+ m�m�

c1c2

m��4	� y
f

�2	 + Ffric + m�
c1

F�
fric 

(16) 

  

It should be noted that in addition to the system states both 

m1 and Ffric are now dependent on the time t, which is once 

again not explicitly written to increase readability.  

It becomes clear, that incorporating derivatives of even a 

single time-variant parameter exponentially increases 

complexity. Since high computational complexity is disad-

vantageous for the desired application, the impact of possible 

simplifications is tested through simulation. As one option all 

derivatives of m3 are disregarded (as in (13)), while still 

treating the parameter m3 itself as time-variant. A comparison 

of this option with (16) shows that the simplification only has 

a minimal impact on the resulting trajectories. 

The impact can be evaluated by the maximum deviation 

that results for the force and reference trajectory as a 

consequence of the simplification. The simulation using (16) 

serves as reference for the calculated deviation. In Tab. I the 

maximum relative error, meaning maximum deviation 

divided by trajectory maxima, is shown for both the force and 

reference trajectory. The error for the reference trajectory is 

clearly negligible, while for the force a noticeable deviation 

occurs. Since the motor force merely acts as a feedforward 

term, any error of this size can easily be corrected by the 

applied follow-up control. The process is repeated for c1, 

were the relative error is even smaller.  

TABLE I: MAXIMUM RELATIVE ERROR CAUSED BY THE NEGLECTION OF 

THE  DERIVATIVES OF m3 
 

 Maximum relative error [%] 

FM 1.5 

x1 0.00125 

 

Based on these results, for the final feedforward control, 

the derivatives of all time-variant parameters are neglected, 

while still treating the parameters themselves as time-variant. 

Meaning that (13), (14) and (15) are used, with c1 and m3 

updated in every control cycle. 

B. Flatness-based trajectory planning 

In accordance with (12) the desired trajectory for a flat 

system has to be at least n-times continuously differentiable 

to result in a continuous system input. Flatness-based 

trajectory generation has to create a trajectory meeting this 

condition. Additionally, the trajectory generation has to 

produce all n derivatives of the desired trajectory, since they 

are required in (13), (14) and (15). 

The most commonly used function types to fulfil the 

requirement of differentiability are polynomial and Gevrey 

functions. The latter is common because it a ��-function. 

Therefore, it is used in conjunction with continuous 

modelling approaches. However, it requires a non-trivial 

integral to be solved for every new trajectory, which entails a 

high computational cost. The authors are not aware of a 

successful online implementation of trajectory generation 

using a Gevrey function for flatness-based control.  

With regards to time efficient positioning, s-curve 

trajectories with trapezoid acceleration profiles are very 

desirable. In contrast to polynomial functions, such 

trajectories can maintain a constant velocity or acceleration 

for a prolonged period of time. In classic trajectory 

generation such 3rd order s-curve profiles are very common. 

Unfortunately, an analytic calculation is only possible up to 

C3 . After that the complexity of the calculation becomes 

impractical ([15]), which is a hindrance for the current 

application. 

In [4] cubic splines where fitted to a trapezoidal 

acceleration profile and twice integrated in order to retain the 

time efficient positioning while also increasing differentia-

bility. This has the downside of requiring a cumbersome 

iterative trajectory generation process to match boundary 

conditions. 

In [8] convolution is applied repeatedly to increase the 

differentiability of a trajectory, starting with a rectangular 

velocity profile. Convolution requires knowledge of the 

entire trajectory and repeated use entails a significant 

computational cost, which hinders once again an online 

implementation. Its superiority to polynomial functions with 

regards to positioning times was proven in [8] for C 4 -

trajectories. 

This paper improves upon this approach by repeatedly 

applying a moving average filter to a s-curve trajectory in 

order to increase its differentiability until a C6-trajectory 

results. Since it is a causal filter, the moving average does not 

require future knowledge of the trajectory. This enables the 

use of an algorithm that is repeated in each control cycle and 

only calculates the next values of the trajectory and its 

derivatives. That means, that the computational cost of 

trajectory generation is spread out over the duration of the 

motion. This drastically reduces the calculations required 

each cycle, allowing for online execution. 

A moving average is calculated for a discrete time series 

via 



M�m	�t	 = 
1

m
� x�t − i	m-1

i=0

, with (17)

m = 
T

Tcyc

, (18)

where T denotes the filter time and Tcyc  the cycle time, 

meaning that m denotes the size of the filter window. 

To reduce the computational cost for use in online 

implementation it is applied as 

M (m)�t	 = M �m	�t − 1	 + x�t	 − x�t-m	
m

. (19) 

It must be ensured that, for the first calculation, 

M �m	�t − 1	 contains the correct starting value.  

In the following an algorithm is presented, which uses n 

moving average filters to produce the desired position 

trajectory yf and its six derivatives in each time step. Each 

filter has its own filter time Ti, with i ranging from 1 to n (here 

n = 6). As a starting point a linear point-to-point motion and 

its rectangular velocity are passed on to the algorithm. As part 

of the process different trajectories will be created, which can 

be distinguished by their degree of continuous differentiabil-

ity. Additionally, each element of each trajectory (such as the 

position, velocity, …) will be described via the shape of its 

completed profile, even though this profile is incomplete for 

almost the entire filtering process. The algorithm, as 

described in the following, is executed once every control 

cycle. 

Each cycle, the algorithm receives only the current values 

of its input trajectories, such as position and velocity. As a 

first step, the derivative of the trapezoidal profile is 

calculated. For the initial invocation in each cycle, that 

trapezoidal profile is the position. This leads to a rectangular 

shaped derivative (see Fig. 6). Next all existing elements of 

the trajectory are filtered using a moving average with the 

first filter time T1, resulting in a C1-trajectory and a 

trapezoidal velocity profile. This also leads to an increase in 

positioning time by T1 (see Fig. 6). Next, the derivative is 

calculated once again and all elements are filtered, now with 

the next filter time T2. This is repeated until it yields a C6-

trajectory. Following this method, only differentiation of 

trapezoidal profiles is required. Thus, a simple difference 

quotient can be used without creating any numerical errors. 

An overview of the number of derivatives and filters that 

have to be calculated or applied respectively, can be found in 

Tab. II. 

For experimental validation, this algorithm is used with 

one adjustment. A pre-existing trajectory planning software 

is used, which creates C2 -trajectories and uses the results as 

starting point for the filtering algorithm. This has the 

advantage of simplifying the implementation and making use 

of an existing user interface. It also reduces the number of 

required calculations, as listed in Tab. II. In the final 

implementation, computational cost is further reduced by 

calculating the inverse of quotients and replacing a majority 

of divisions with multiplications. Even without a more 

detailed analysis of computational costs, it becomes apparent, 

that the online capability of this method extends to systems 

with an order above n = 6. 

TABLE II: COMPUTATIONAL COST OF FILTERING ALGORITHM 

 derivative filter 

C0 → C6 6 27 

C2 → C6 4 22 

Ck → Cn n − k � i
n+1

i!2"k

 

number of sums 1 2 

number of divisions 1 1 

 

In section IV it will be shown, that this approach can be 

successfully used on the test bed, which is a real-time system. 

Therefore, it solves the problem of online generation of 

dynamic trajectories for a flatness-based control pertaining to 

systems with a similar system order.  

C. Meeting the boundary conditions 

One important aspect of trajectory planning has so far 

been ignored. This is the meeting of boundary conditions. It 

is mandatory that an adherence to a maximum velocity, 

acceleration and force, from now on referred to as system 

maxima, can be guaranteed before the start of the motion. 

Approximations for all system maxima can be created using 

only the maxima of the desired trajectory y
f,max

(i)
. These 

maxima can be calculated from the filter times and preceding 

maxima as presented by Beckmann, et. al [8]: 

 

 

Figure 6: Procedure for the online generation of Cn-trajectories 



y
f,max

(i) = y
f,max

(i-1)

Ti 
, (20) 

where y
f,max

(i)
 denotes the maxima of the desired trajectories i th 

derivative and Ti  denotes the matching filter time. This 

calculation only works for all maxima, if each filter time is 

equal or larger than all following filter times: 

Ti # � Tj.n

j!i"1

 (21) 

If this condition is violated larger values than the 

calculated maxima can occur, which could lead to a violation 

of the system maxima. 

Assuming that distance y
f,max

(0)
, maximum velocity y

f,max

(1)
 

and acceleration y
f,max

(2)
 are already determined by the C2-

starting-trajectory, the corresponding filter times T1  and T2 

can be calculated based on (20). These times do not actually 

correspond to a filter, since their effect was already applied 

in the preceding motion planning, as depicted in Fig. 6.  

The remaining filter times can be chosen freely within the 

boundaries set by (20) and (21). Since they directly influence 

the system maxima, the choice of filter times influences the 

behaviour of the overall flatness-based control. 

Following the algorithm presented in this and the 

previous section, an appropriate C 6-trajectory can be 

generated online while adhering to the given boundary 

conditions. The resulting trajectory yf is inserted into (13), 

(14) and (15) to calculate feedforward term and reference 

trajectory respectively. This completes the implementation of 

the suggested flatness-based feedforward control approach.  
 

IV. EXPERIMENTAL RESULTS 

In order to validate the developed flatness-based 

feedforward control (from now on called flatFFC) it is 

compared with two input shaper variations. An input shaper, 

also known as a command shaper, adjusts a reference 

trajectory in order to eliminate oscillations of a specific 

frequency [16]. Mathematically speaking, it convolves the 

trajectory with two or more impulses, as shown in Fig. 7.  

By applying two impulse with the right amplitudes, at the 

right time, one specific frequency of oscillation can be 

eliminated from the trajectory and thus, from the system 

response. In the following, a zero vibration (ZV) input shaper 

and an extra insensitive (EI) input shaper will be used. The 

ZV input shaper is the most basic variation. It uses two 

impulses as shown in Fig. 7 to suppress one specified 

frequency. In contrast the EI input shaper uses three impulses 

to suppress two frequencies, one slightly larger and one 

slightly smaller than the specified frequency. The normalised 

oscillation amplitude remaining after the use of these input 

shapers is presented in Fig. 8. 

These two input shaper variations have already been used 

by Post et al. [4] as a comparison for a flatness-based 

feedforward control developed for a tower crane. 

 

Figure 8: Sensitivity Curves of the two Input Shapers  

In order to measure the mast oscillations, an acceleration 

sensor is attached to the mast head. The resulting 

measurements are processed with a low-pass filter, 

eliminating all frequencies above 8 Hz. The resulting 

measurement is structured in four parts (see Fig. 9). First the 

acceleration phase, next a motion with constant velocity 

followed by the deceleration phase and finally the oscillation 

phase. The amplitude of the resulting acceleration oscillation 

Aa can be converted into the amplitude of the position 

oscillation Ax, if oscillation frequency f is known:  

Ax = (2πf )
2
Aa. (22) 

The mast is defined as oscillation free, when the 

oscillation amplitude no longer exceeds 2 mm. A correspond-

ing acceleration boundary, calculated based on the observed 

oscillation frequency, is included in each plot. For evaluation 

purposes the positioning time tp, oscillation time to and 

“oscillation free” time tof are calculated for each measure-

ment. The “oscillation free” time refers to the time from the 

start of the positioning, until the status oscillation free is 

reached. 

In order to test functionality of all three methods, a 

trajectory with boundary conditions corresponding to Tab. III 

is applied repeatedly to the test bed. The same cascade control 

is used as a follow-up control for all methods. 

For the first motion the LHD is at rest at the bottom of the 

mast (h
�� = 0 m). For the second motion it is at rest at the 

top of the mast (h
�� = 1.1 m). For the final one it moves Figure 7: Basic principle of an input shaper 



alongside the platform from 0 m to 1.1 m. For the first two 

measurements the input shapers are parameterised with the 

same frequency as the flatness-based control, i.e. the actual 

mast frequency. For the final one the medium mast frequency 

is used to parameterize the input shapers. 

As can be seen in the upper part of Fig. 9, all methods 

work well if the LHD is located at the bottom of the mast. 

While EI shows larger oscillations than the other two 

methods, it still barely exceeds the oscillation boundary. 

Generally speaking, a resulting oscillation time under half a 

second, as observed here, can be classified as negligible. A 

poorer performance of EI is expected in this case, since the 

input shapers are parameterised with a close approximation 

of the mast frequency. Therefore, the normalized frequency 

is approximately 1, which causes some oscillations to remain 

for EI (see Fig. 8). 

This becomes more apparent, if the LHD is positioned at 

the top of the mast (see Fig. 9, middle plot). Here EI performs 

noticeably worse. Due to the higher position of the LHD, the 

effective mast mass increases to twice its size (see Fig. 5). 

Therefore, the resulting force on the mast head doubles as 

well. This results in a remaining oscillation of around 5 mm 

for EI. Due to the minimal damping of the mast this increases 

the “oscillation free” time tof significantly. The resulting 

characteristic times as defined beforehand are listed in Tab. 

IV. 

An important difference between the three methods is the 

positioning time tp. ZV has the shortest tp out of the three 

methods. EI has a longer positioning time due to its 

convulsion with three impulses instead of two. The 

positioning time of flatFFC is slightly longer than that of ZV. 

Since, for the first two scenarios, both ZV and flatFFC show 

no noteworthy oscillations following the positioning, this 

means that ZV has the best overall results for a motion with 

a static LHD. 

It should be noted that each method increases the 

positioning time compared to the initial trapezoidal 

acceleration profile �tp = 1.64 s). This is compensated by a 

reduced oscillation time to resulting in an overall lower tof. 

For instance, for the first measurement (see Fig. 9, top) the 

same motion without using an oscillation reduction scheme 

results in a tof of 8.42 s. In [6] and [8] where a similar 

trajectory generation scheme to flatFFC is used, such an 

increase in positioning time is avoided. The jerk of the 

flatness-based trajectory is increased, so that it compensates 

the lengthening in positioning time caused by the trajectory 

TABLE III: BOUNDARY CONDITIONS OF THE REFERENCE TRAJECTORY 

xstart xend vmax amax 

0.3 m 2.5 m 1.9 m/s 5 m/s2 

    
 

 

 

 

Figure 9: Resulting mast acceleration for three different positioning tasks. 
For each method, the end of the positioning is marked by a vertical line. 

(top: h
�� = 0 m, middle: h
�� = 1.1 m, bottom: h
�� = 0 m − 1.1 m) 

TABLE IV: CHARACTERISTIC TIMES (BEST TIMES IN BOLD) 

hLHD [m]  tp [s] to [s] tof [s] 

0 

ZV 1.72 0 1.72 

EI 1.86 0.48 2.33 

flatFFC 1.77 0 1.77 

1.1 

ZV 1.79 0 1.79 

EI 1.91 6.31 8.22 

flatFFC 1.80 0 1.80 

0 – 1.1 

ZV 1.74 6.30 8.20 

EI 1.89 2.56 4.34 

flatFFC 1.78 0.13 1.87 

 



filtering. This is more difficult in this work, since a C6-

trajectory is required in contrast to the C4-trajectory used in 

[6], [8]. A higher order of differentiability entails more 

filtering and thus, a larger increase in positioning time. 

Regarding the oscillation reduction, similar results are 

achieved. In [6] and [8] the maximum reduction of oscillation 

amplitude is 89%. Applying the same criteria here, leads to a 

reduction of 94% for flatFFC, and 72% and 38% for ZV and 

EI respectively. 

For a simultaneous motion of platform and LHD the 

effectiveness of the two input shaper types inverts, leading to 

a better result for EI. ZV is not capable of effective damping, 

if the eigenfrequency changes during platform motion. In 

contrast, EI is designed to dampen a broader spectrum of 

frequencies.  Therefore, it performs better for a moving LHD 

than for a static one. Even better performs flatFFC with a 

negligible oscillation time. This proves that the developed 

oscillation reduction scheme is able to drastically reduce 

oscillations for a moving LHD as well. 

With regard to literature, only the results of [3] and [4] 

can be compared to the simultaneous motion of platform and 

LHD. [3] achieves a completely oscillation free positioning. 

However, further comparison is difficult, since the paper 

employs an optimization-based trajectory planning approach.  

In [4] the flatness-based approach is compared to EI and ZV 

input shapers as well, but it is applied to a tower crane. Yet it 

also examines a simultaneous motion of two axis, comparable 

to simultaneous motion of platform and LHD. The results 

regarding positioning time and oscillation reduction exhibit 

the same trends as the validation of the simultaneous motion 

presented here. Meaning it finds the flatness-based approach 

to offer the best compromise regarding both criteria, with 

near optimal oscillation reduction but a slightly longer 

positioning time. 

Overall it can be stated that while some oscillations 

remain during simultaneous motion, the chosen modelling 

approach that includes the time-variant mast eigenfrequency 

has proven an effective basis for a flatness-based oscillation 

reduction scheme. 

A substantial negative effect due to neglection of the 

upper mast eigenfrequencies cannot be observed. The only 

case that leads to any remaining oscillation is the 

simultaneous motion. Yet this case is not examined in works 

which include these neglected frequencies ([2], [5], [10]), 

making further analysis difficult. 

Regarding input shapers, it was shown that EI offers a 

variation of input shaping that can reduce oscillations for a 

moving LHD, yet only flatFFC is able to almost completely 

eliminate them. Since for a real stacker crane most motion 

would be simultaneous motion of LHD and platform this last 

result is of the highest importance. It should be noted that, in 

real life applications, not all LHD motion would span the 

entire mast length, thus possibly causing a smaller change in 

mast eigenfrequency. 

V. CONCLUSION 

In this paper, a flatness-based feedforward control 
approach for oscillation reduction on a belt driven stacker 
crane has been presented. A 6th order model of the test bed is 
created, taking into account belt and mast oscillations as well 
as the time-variant nature of both eigenfrequencies. The 
inverse system model necessary for feedforward control is 
calculated using the method of differential flatness. 

A new method for generating desired trajectory is 
introduced, which uses moving average filters to increase the 
continuous differentiability of a s-curve trajectory with a 
trapezoidal acceleration profile. By using a causal filter, the 
current values of the desired trajectory can be calculated in 
each control cycle. This distributes computational costs across 
the motion, reducing the computations necessary in one cycle.  
The adherence to boundary conditions can be guaranteed by 
choosing appropriate filter times. Through this method online 
generation of sufficiently smooth, time efficient trajectories 
on a real-time system becomes possible. This in turn enables 
the use of flatness-based feedforward control without 
requiring lengthy offline calculations beforehand and without 
foreknowledge of the desired trajectory. Only an initial 
parametrization of the model is required. Additionally, it can 
easily be implemented on a variety of systems, using a variety 
of control schemes, by simply inserting the feedforward 
control after the already existing motion planning. 

The developed feedforward control scheme proves 
capable of reducing the mast oscillation to negligible levels. 
This is achieved with a much simpler dynamic model than 
many other attempts at flatness-based feedforward control of 
stacker cranes use. It has worked consistently well for all 
tested scenarios, matching or exceeding the performance of 
the input shaping. When the load handling device is moved 
during motion, a 95 % reduction of oscillation time compared 
with the best input shaper is achieved. The consistent 
performance of this oscillation reduction scheme for a static 
and a moving load handing device sets it apart. This is 
primarily enabled through the inclusion of the time-variant 
mast eigenfrequency in the system model.  
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