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Abstract

Lemmatization is a central task in many
NLP applications. Despite this importance,
the number of (freely) available and easy to
use tools for German is very limited. To fill
this gap, we developed a simple lemmatizer
that can be trained on any lemmatized cor-
pus. For a full form word the tagger tries
to find the sequence of morphemes that is
most likely to generate that word. From
this sequence of tags we can easily derive
the stem, the lemma and the part of speech
(PoS) of the word. We show (i) that the
quality of this approach is comparable to
state of the art methods and (ii) that we can
improve the results of Part-of-Speech (PoS)
tagging when we include the morphologi-
cal analysis of each word.

1 Motivation

In the following we present a simple approach to
lemmatization of German texts and compare the re-
sults with a number of other easily available tools.

The motivation was twofold: while lemmatiza-
tion seems to be a core task in analyzing text, in
most standard Python packages like Stanford’s Nat-
ural Language Toolkit (NLTK), no lemmatization
for German is available. Mainly for teaching un-
dergraduate students we wanted to have a simple
tool, that gives linguistically correct lemmata for
all words and is also easy to use and install on a
Python notebook server. In the second place, we
wanted to investigate, whether a careful splitting
of a word into a stem and suffix can improve the
treatment of unknown words in a standard trigram
PoS tagger, in which the PoS otherwise is guessed
on the base of the final letters of a word.

Lemmatization is a core task in analyzing text.
Nevertheless it did not receive as much attention
as e.g. PoS tagging. Rule based systems can reach

a very high accuracy for morphological analysis.
However, existing systems are not always available
and the construction of a lexicon and morphologi-
cal rules is a very tedious task. In practice therefor
often simple heuristic rules or a dictionary lookup
are used, even if the quality of the tools is not
even known. Especially for information retrieval
the quality of lemmatization seems not to be very
important and some studies suggest that any form
of heuristic stemming, mixing up inflectional and
derivational morphology can be used (Kettunen et
al., 2005; Moral et al., 2014) though some other
studies contradict these findings (Braschler and
Ripplinger, 2004).

In the following we present an approach to mor-
phological analysis based on computing the most
likely sequence of morphemes for a given word. In
section 2 we present the details of this method. In
subsection 2.4 we show how we can use the results
in a PoS tagger. In section 3 we discuss related
work and alternative approaches and finally, sec-
tion 4 compares the results on lemmatization and
PoS tagging.

2 Method

Given a word w = a1 . . .an we try to find the most
likely sequence of morpheme tags s = t1 . . . tk that
generates w. We cannot use a standard Hidden
Markov Model and the Viterbi algorithm to find
the most likely sequence s since we do not have
a segmented list of output observations. However,
the solution presented here is very similar to a Hid-
den Markov Model and the computation of the
most likely tag sequence is almost identical to the
Viterbi Algorithm. We define the most likely tag
sequence s that generates w as

max
k,s∈T k

k

∏
i=3

p(ti | ti−2ti−1) · p(alimi |ti) (1)

where T is the set of all tags, 0 ≤ li ≤ mi ≤ n for
each i and w = al3m3 · . . . ·alkmk .
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Since here every state is dependent on two pre-
vious states we call the model second order model
and we have to add two start states to every se-
quence. We also add a final state that generates
the empty string to each tag sequence. We add one
final state for each PoS tag. This will allow us, to
compute the most likely tag sequence for each PoS.

Using dynamic programming we can find the
optimal tag sequence efficiently. Using a first order
model, for a string w = a1 . . .an we define the prob-
ability that a prefix a1 . . .a j of w is tagged with a
tag sequence in which the last tag is t as

ϑ(t, j) = max
r,s,i

(ϑ(s, i) · p(ai j | t) · p(t | s)) (2)

for each t ∈ T and 2≤ j≤ n where s∈ T , 2≤ i≤ j,
ai j denotes the substring ai . . .a j from w and

ϑ(t,1) = p(t | START). (3)

The equation can easily be extended for a second
order model but the becomes slightly more com-
plicated. When we compute ϑ(t, j) we get the
well-known Trellis diagram. When we extend the
algorithm with a backpointer, we can easily find
the optimal tag sequence for a given word.

Consider e.g. the word Sorgen, that can either
be the plural of the noun Sorge, the infinitive of
the verb sorgen, or a finite form of the same verb.
Now, for each of the corresponding final states
we can compute the most likely tag sequence that
generates the word sorgen. In our data we thus find
the following tag sequences:

sinf = None, START,VV, SUF_INF,END_VVINF

sfin = None, START,VV, SUF_FIN,END_VVFIN

snn = None, START,NN, SUF_NN,END_NN

The probability that the sequence snn generates the
word is computed as follows: p(Sorgen,snn) =
p(NN | None, START) · p(SUF_NN | START,NN) ·
p(END_NN | NN, SUF_NN) · p(‘sorge’ | NN) ·
p(‘n’ | SUF_NN) = e−1.60854 · e−1.46985 · e0.0 ·
e−7.82129 ·e−1.43789 = e−12.33757. Similarly, we find
p(sorgen,sfin) = e−10.77681 and p(sorgen,sinf) =
e−10.63024.

Since there could be several sequences generat-
ing sorgen and ending in END_NN, the probability
p(Sorgen,snn) is not the probability that the word
is generated by a noun sequence. To compute that
probability we would need an equivalent of the for-
ward algorithm, that computes the sum of all proba-
bilities leading to one state instead of the maximum.

However, in practice alternative paths turn out to
be completely nonsense (since the model is highly
over generating) or extremely unlikely (and thus
do not change anything).

Given the large amount of training data for
words, and the fact that for each substring we can
assume that it is generated by one of the open
class morphemes, we do not need any interpola-
tion or smoothing and use the trigram probabilities
directly.

Finally, we use also case information and multi-
ply the found probability with the probability that
a word of the found class is capitalized or not.

2.1 Unknown Words

For each string we can assume that it is an unseen
instance of an open morpheme class. Currently we
defined by hand, which classes are the open classes,
but this also can quite easily be guessed from the
number of hapax legomena in each class.

For a morpheme m = a1 . . .an we can estimate
the probability that an unseen morpheme is gener-
ated by a given morpheme tag using the probability
that a morpheme ending on a given suffix is gen-
erated by that class. We compute these suffixes
probabilities on infrequent morphemes, assuming
that morphemes not observed in the test data are
more similar to infrequent than frequent to mor-
phemes. If not enough observations are available
for suffixes of length n we use the probabilities for
suffixes of length n− 1. To compute the proba-
bilities of the shorter suffixes we exclude all mor-
phemes ending on one of the longer suffixes for
which we had enough observations. E.g. if we use
the probability p(noun | ung), for bigrams we use
p(noun | ng and not ung) rather than p(noun | ng).

For longer unknown words we need to be sure,
that an analysis using several known morphemes
is preferred over the analysis as one unknown mor-
pheme. Especially long nouns should be much
more likely to be a noun compound, consisting of
two or more known stems than being a completely
unseen stem. Thus we also use the probability
p(n | t) that a morpheme of length n is generated
by t. We compute this probability on infrequent
morphemes again. Finally, we use the probability
phap(t) that the tag produces a hapax legomenon.
Thus we approximate the probability of an unseen
morpheme m = a1 . . .an given a tag t as

p(m | t)≈ p(an−2an−1an | t) · p(n | t) · phap(t). (4)
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2.2 Generating training data
The most critical part in the development of the
analyzer is the generation of training data. We
generate the training data from the Tiger Corpus
(Brants et al., 2002). Here we find a lemma and a
PoS for each word form. The basic idea now is to
split the word form in the stem, that can easily be
derived from the lemma, and prefixes and suffixes.
E.g. the word geplant with lemma planen and stem
plan can be split up in ge, plan and t. For the affixes
we assign tags based on the given PoS. Thus, in the
present example we generate
[ ( ’ ge ’ , ’PREF_PP ’ ) , ( ’ p l a n ’ , ’VV’ ) , ( ’ t ’

, ’SUF_PP ’ ) , ( ’ ’ , ’END_VVPP ’ ) ]

In many cases we end up with much more compli-
cated sequences. We restrict the decomposition
of words to inflectional morphology except for
noun compounds, comparatives and superlatives of
adjectives and adjectives derived from participles.
Thus we have sequences like
[ ( ’ a u f ’ , ’PTKVZ ’ ) , ( ’ ge ’ , ’PREF_PP ’ ) , ( ’

s c h r e c k ’ , ’VV’ ) , ( ’ t ’ , ’SUF_PP ’ ) , ( ’
’ , ’END_VVPP ’ ) ]

[ ( ’ a m t i e r ’ , ’VV’ ) , ( ’ end ’ , ’PRESPART ’ ) ,
( ’ en ’ , ’SUF_ADJ ’ ) , ( ’ ’ , ’END_ADJA ’ ) ]

[ ( ’ ordnung ’ , ’NN’ ) , ( ’ s ’ , ’FUGE ’ ) , ( ’ k r ä
f t ’ , ’NN_VAR’ ) , ( ’ en ’ , ’SUF_NN ’ ) , ( ’
’ , ’END_NN’ ) ]

We use several language dependent heuristic rules
to split up each word. In German the stem often
is not a part of the surface form. In most of these
cases we can find a variant of the stem by search-
ing a substring that starts and ends with the same
consonants. E.g. for the word jüngeren (younger)
with stem jung (young) we find:
[ ( ’ j üng ’ , ’ADJ_VAR ’ ) , ( ’ e r ’ , ’ADJ_COMP ’ )

, ( ’ en ’ , ’SUF_ADJ ’ ) , ( ’ ’ , ’END_ADJA ’ ) ]

In addition now the substitution jüng/jung will be
stored for the adjective class. These substitutions
will be used later to reconstruct the stem and lemma
of an analyzed word.

In total we used 52 final tags (i.e. tags encoding
the PoS of a word and not corresponding to any
morpheme) and 75 real morpheme tags.

The morpheme classes obtained in this way are
very rough and result in a massively overgenerating
model. E.g. for some verbs the past participle is
formed without the prefix ge. Thus the model
allows the morpheme tag SUF_PP without having
seen the morpheme PREF_PP before and inde-
pendent of the verb, since no distinction is made
between verb classes needing the prefix and those

that do not have this prefix in the past participle.
Thus even a form like lauft could be analyzed as
[(’lauf’, ’VV’), (’t’, ’SUF_PP’),
(”, ’END_VVPP’)]. However, it turns out that
for analyzing there is only a limited number of
cases, where this causes problems.

2.3 Lemmatization

Once the most likely sequence of tags is found, a
small set of rules is used to generate the correct
lemma. These rules mainly deal with the genera-
tion of an infinitive from a stem and with the appli-
cation of the stored substitutions for irregular stems
and stems with Ablaut (vowel gradation).

2.4 Part of Speech Tagging

The usual way to analyze German or English is to
start with part-of-speech tagging and then to ana-
lyze each word according to the found PoS. It is
now tempting to investigate, whether the other way
around works as well: instead of using observed
probabilities we could use the probabilities as com-
puted by the morphological analysis. To be precise:
we computed p(w, t) for a word and a tag before. In
a standard trigram tagger (see e.g. Brants (2000))
we need the probability p(w | t). This probabil-
ity can be computed easily by using the fact that
p(w | t) = p(w,t)

p(t) .
The approach has the advantage that we get

much better statistics for inflectional variants of
infrequent words. On the other hand we lose a lot
of information on specific word forms. For some
words only certain forms are frequently used, and
others are infrequent or even not existent. E.g. the
noun Ärger (trouble, annoyance) does not have a
plural form. Consequently, the form ärgere only
can be a verb form (from ärgern, to annoy). Using
the morphological analysis described above, we
will nevertheless find an analysis as noun as well.

In the following we will use two variants: in the
first variant we use only the probabilities computed
by the morphological analysis. In the second vari-
ant we will use the observed probabilities and use
the morphological analysis for words that were not
observed in the training data. Here we treat words
seen once and twice as unseen words as well.

We base the transition probabilities on trigram
statistics over tags. Here we use linear inter-
polation to avoid zero probabilities and set the
smoothed probability p∗(tn | tn−2tn−1) = 0.95 ·
p(tn | tn−2tn−1)+0.04∗ p(tn | tn−1)+0.01 · p(tn).
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2.5 Implementation
We implemented all algorithms in pure Python. The
script to generate training data from the Tiger cor-
pus and the classes to train and apply the morpho-
logical analysis and the PoS tagging are available
on Github1 and PyPI2.

In order to speed up the computation, we com-
pute the analysis for 2000 frequent words imme-
diately after training and store the results in the
model file as well. Here we exclude all analyses
resulting in a PoS tag that was never observed for
that word. This also slightly improves the results.

In the following we will call this tagger Hanover
Tagger or short, HanTa, and refer to the version
using observed probabilities for all words that were
seen at least three times in the training data as
HanTa (hybrid).

In the package available on GitHub there are
functions to analyze a single word, to tag a sentence
or to tag and lemmatize a sentence at once. The
user can also choose to get only the PoS tag, the
lemma, or a morphological analysis.

3 Related Work and Alternative Tools

At first glance lemmatization seems to be an easy
task. Nevertheless, for most languages, at least for
German, we need some morphological analysis to
find correct lemmata. State of the art methods for
morphological analysis are still rule based. In the
first place here the work of Koskenniemi (1983)
has to be mentioned. For German this approach
was used in the SMOR tool (Schmid et al., 2004).

Besides the rule based approaches there are sev-
eral attempts to derive a morphological model for
a language in a complete unsupervised way. An
example of this approach is Morfessor (Creutz and
Lagus, 2007), that in fact uses an underlying model
for morphology that is very similar to ours. For a
recent overview of unsupervised learning of mor-
phology we refer to (Goldsmith et al., 2017).

Only a few studies deal with the possibility to
learn lemmatization or morphology in general from
annotated data. Kanis and Müller (2005) and Jonge-
jan and Dalianis (2009) learn rules from a lemma-
tized corpus to transform an inflected word form
to a lemma. Gashkov and Eltsova (2018) obtain
good results for German by a full-form dictionary
and applying analogy for unknown words: basi-
cally, for an unknown word form the word with

1https://github.com/wartaal/HanTa
2https://pypi.org/project/HanTa/

the longest common suffix is searched and then
the transformation associated with that word is ap-
plied. Gesmundo and Samardžić (2012) propose
to annotate words with the type of rule, needed to
transform the full form to a lemma, thus reducing
lemmatization to a tagging task. A similar idea
is followed by Chrupala et al. (2008) who define
classes that correspond to mappings from word
forms to lemmata and train a classifier to classify
words accordingly. This approach is extended by
Müller et al. (2015) who use more features and con-
ditional random fields for classifying morphemes.
To some extend our model resembles this approach.
The main differences are (i) that we learn on seg-
mented data (and thus have to produce such data be-
fore learning) and (ii) that Müller et al. (2015) learn
the transformation needed to produce a lemma as
well, while we need a small language specific, rule
based component that produces a lemma from the
list of morphemes found.

Our goal is not to improve on state of the art
morphological analysis but just to have an easy tool
that gives results that can be used in further tasks
and to provide an alternative for lemmatization
tools that are easily available and therefor used
frequently. In the following we thus compare the
results of lemmatization to those obtained by the
TreeTagger, Spacy and GermaLemma. For testing
PoS tagging we use the same tools and in addition
an own implementation of a standard second order
Hidden Markov Model, using suffix statistics to
guess the output probabilities for unseen words.

The TreeTagger (Schmid, 1999) is a PoS tagger
based on a second order Hidden Markov Model
(or trigram model) extended with decision trees to
use more contextual information and dictionaries
of prefixes and suffixes to improve the basic model.
The standard model for German was trained on a
manually tagged newspaper corpus.

Spacy (ExplosionAI GmbH, 2019) is a state of
the art tool based on deep learning for tokenization,
PoS tagging and named entity recognition. Spacy
also provides lemmatization. While other mod-
ules are based on trained artificial neural networks,
lemmatization is rule based. We used release 2.1.4.

GermaLemma (Konrad, 2017) is a tool that com-
bines a full form lexicon, extracted from the Tiger
Corpus, an algorithm for splitting compounds and
morphological rules from the Pattern package (The
CLiPS (Computational Linguistics & Psycholin-
guistics) research center, 2018). GermaLemma
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requires that the lemmatization is preceded by PoS
tagging.

4 Evaluation

Since our focus is on the development of a prac-
tical tool for lemmatization, that can be used as a
component in a larger pipeline, we will use large
corpora, in which many words occur many times,
instead of word lists for evaluation.

4.1 Data

As mentioned before we use the Tiger Corpus for
training. We used version 2.2 which consists of
50 · 103 sentences or 0.9 · 106 tokens. For cross
validation we split the corpus into 10 contiguous
parts, as was also done by Giesbrecht and Evert
(2009) and is considered to be a slightly harder
and more realistic setting than taking every tenth
sentence, since every part now gets sentences from
different texts. In addition we use a list of the most
frequent verb forms extracted from the DeReKo
Corpus (Stadler and Wegstein, 2016) to train the
morphology model and to make sure, that at least
the most frequent verb stems are seen in the training
phase.

For evaluation, besides the Tiger Corpus, we use
TüBA D/Z and the Hamburg Dependency Treebank.
The Hamburg Dependency Treebank (HDT) (Foth
et al., 2014) is very interesting for our purpose since
it consists of texts from a different domain. Tiger
and TüBA D/Z consist of daily newspaper texts,
while HDT uses texts from heise.de with news
and background articles on anything related to com-
puter hard and software. Here we observe the use
of a different vocabulary and sometimes deviations
from standard German spelling, like writing com-
pounds as words separated by blanks. We use part
A of the corpus, which was manually annotated
and checked for consistency. This part consists
of 102 000 sentences or 1.87 ·106 tokens. We use
HDT for evaluation of PoS Tagging. The lemmata
provided cannot be used for evaluation, since for
compounds only the head is given as a lemma.

TüBa D/Z (Telljohann et al., 2004) is a manu-
ally annotated newspaper corpus of a similar size
(104.787 sentences or 1.96 · 106 tokens). TüBA
D/Z uses a slightly different tagset than Tiger:
TüBA D/Z has a different tag for pronominal ad-
verbs (which we just can replace to compare re-
sults) and it distinguishes between two different
forms of attributive indefinite pronouns (with and

Figure 1: Observed (x-axis) vs. predicted proba-
bilities (y-axis) (here displayed as the natural loga-
rithm of the probabilities) for 2337 word-tag pairs.

without determiner) while Tiger just has one. Thus,
we remove this distinction when evaluating results
trained on the Tiger annotation scheme. With re-
gard to the lemmata, TüBa D/Z uses a #-sign to
mark the boundary of separable prefixes and some-
times adds disambiguating PoS information to the
lemma. Both are removed. In some cases (espe-
cially for adjectival nouns) several possibilities for
the lemma are listed and separated by a pipe sym-
bol. Here we keep the whole string as it is.

4.2 Lemmatization

First, we compare the values of the predicted prob-
abilities with the observed probabilities. For this
purpose we take every 10th word of a list of all
word forms occurring at least 3 times. This results
in a list of 2337 words. For each of these words
we compare the probability for the most probable
observed tag with the probability estimated for that
tag. The Pearson correlation between the two meth-
ods is 0.455 indicating a low correlation between
the observed and predicted values. Especially for
infrequent word forms the estimates are much too
low (see Figure 1). This situation is not completely
unwanted: we will predict non-zero probabilities
for many word forms not present in the corpus.
Consequently, some observed probabilities have to
become smaller.

4.2.1 Quantitative Analysis
The morphological analysis gives a ranked list of
possible PoS tags for each word. We use precision,
recall and Mean Reciprokal Rank (MRR) to eval-
uate these rankings, computed for one fold from
the 10-fold cross validation division of the tiger
corpus. Here we do not take into account the words
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Table 1: Mean Reciprokal Rank on the prediction
of the PoS on 10% of the Tiger corpus, using 90%
as training data. The prediction is only based on
the morphological analysis, not taking into account
information from surrounding words.

all words unknown words
HanTa 0.955 0.900

HanTa (hybrid) 0.962 0.900

Figure 2: Precision and recall of the prediction of
the PoS on 10% of the Tiger corpus. The green
line gives the results for unknown words, while the
blue (upper) line corresponds to all words.

around each word and for an ambiguous word we
thus always predict the most likely tag.

Figure 2 shows the precision-recall curves for
the tagger using only predicted probabilities. The
MRR for known and unknown words for both vari-
ants of the tagger are given in Table 1.

Despite the low correlation of the observed and
computed probabilities, the ranking of the results
seems to be almost identical.

Next, we test the accuracy of lemmatization of
HanTa, the TreeTagger, Spacy and GermaLemma
on the Tiger and the TüBa Corpora. We use Ger-
maLemma here in combination with our own Tri-
gram Tagger implementation (GerTriTa). For Ger-
TriTa and HanTa we use 10-fold cross validation
on the Tiger Corpus. However, GermaLemma is
trained on the Tiger Corpus. Thus, here we cannot
really use the results. The same holds for Spacy
that is trained on Tiger as well.

Since the correct lemmatization for many closed
class elements is unclear and arbitrary (e.g. in Tiger
the lemma of the determiner das is der while the
TreeTagger generates the lemma das, which we do
not want to consider as incorrect) we evaluate on

Table 2: Accuracy of lemmatization on the Tiger
corpus. Values in brackets are obtained by evaluat-
ing on the training data

all unknown
HanTa 96.98 ±0.24 86.00 ±0.68

HanTa (hybrid) 97.12 ±0.25 86.00 ±0.68
TreeTagger 96.12

Spacy (87.46)
GermaLemma (97.79 ±0.20 ) (96,38 ±0.37 )

Table 3: Accuracy of lemmatization on the TüBa
D/Z corpus.

HanTa 92.98
HanTa (hybrid) 93.06

TreeTagger 93.59
Spacy 86.60

GermaLemma 92.23

the open class words only. Results are given in
Table 2.

We also evaluated the lemmatization on the
TüBa D/Z Corpus. This corpus was not used in
development or training of any of the compared
tools (as far as we know) and therefore is much
better suited for evaluation. The results are given
in Table 3.

4.2.2 Error Analysis

For the HanTa lemmatizer we clearly see two main
sources of errors. In the first place many plural
forms of long (unknown) nouns are not correctly
analyzed as a stem and a plural suffix. E.g. the
word Plattenläden (Record shops), occurring in
TüBa D/Z but not in Tiger gets the lemma Plat-
tenläden, since the analysis as one long unknown
word is slightly more probable than the analysis
as a compound, which would have enabled HanTa
to correctly lemmatize the word as Plattenladen.
Also for a simple word like Volkslieder (Folk songs)
HanTa preferred the analysis as one large unknown
noun over the analysis Volk+s+lied+er. This is
partly also caused by the quite low probability of
the suffix er. Here it could help to have more fine
grained classes that would give a higher probability
for the suffix er after certain nouns.

The second source of errors is formed by adjec-
tival nouns and especially present participles that
are used as nouns, like Lehrende (teaching person).
We did not code this type of nouns in any special
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Table 4: Accuracy of PoS tagging on the Tiger
corpus.

all unknown
HanTa 96.52 ±0.33 88.98 ±1.04

HanTa (hybrid) 96.96 ±0.34 88.98 ±1.04
GerTriTa 96.94 ±0.31 88.04 ±0.72

TreeTagger 95.08

way in the training data, but just coded them as
one nominal morpheme. In the Tiger corpus lem-
mata are not assigned uniformly to these type of
nouns. E.g. the word Andersdenkende (dissent-
ing person) is lemmatized as andersdenkend , the
word Asylsuchenden (asylum seeking person) is
lemmatized as Asylsuchender (with strong mascu-
line flexion) and Wohlhabenden (wealthy person)
as wohlhabende (with weak flexion). In the TüBa
D/Z corpus these type of nouns have three lemmata
(one for each gender), separated by a ’|’-sign in case
the gender is underspecified and the lemma with
the corresponding gender marking, if the gender
is clear. Thus Süchtigem (addicted person, dative
masculine singular) gets the lemma Süchtiger.

Most other lemmatizing errors are caused by am-
biguity and the assignment of the wrong PoS. E.g.
the word überzeugt (convinced) has to be lemma-
tized as überzeugen if it is a past participle, but it
has to be lemmatized as überzeugt if it is a past
participle used in an adjectival way (at least accord-
ing to the annotation principles of Tiger and TüBa
D/Z; see e.g. (Lenz, 1993) and (Eisenberg, 1994,
p. 71) for a discussion on the status of German par-
ticiples). Finally, the frequent words möchte and
möchten (would like) are lemmatized incorrectly
in Tiger as möchten, and thus learned incorrectly
by HanTa, while they are correctly lemmatized as
mögen in TüBa D/Z.

4.3 Part of Speech Tagging

For the evaluation of the PoS tagging based on
the tag probabilities found by the lemmatizer we
use two corpora: the TüBa D/Z treebank and the
manually corrected part (part A) of the Hamburg
Dependency Treebank. Especially, the latter one is
interesting since its text are not from daily newspa-
pers like the data from Tiger and TüBa D/Z.

The results for evaluating PoS tagging with 10-
fold cross validation on the Tiger Corpus are given
in Table 4. The results on TüBa D/Z and HTB are
given in Table 5.

Table 5: Accuracy of PoS tagging on the TüBa D/Z
and HDT Corpora.

Tüba HTB
HanTa 95.07 93.80

HanTa (hybrid) 95.54 94.29
GerTriTa 93.19 92.97

TreeTagger 94.81 92.87
Spacy 93.38 92.75

Table 6: Top 10 most frequent errors. The first col-
umn gives the correct PoS tag, the second column
the predicted PoS and the last column the propor-
tion this error has to the total number of errors.

PoS Predicted PoS Perc.
NN NE 10.20 %
NE NN 5.36 %
KOKOM APPR 5.11 %
VVFIN VVINF 4.23 %
NE FM 3.09 %
ADV ADJD 2.76 %
NN ADJA 2.47 %
FM NE 1.78 %
VVFIN VVPP 1.69 %
KOUS PWAV 2.63 %

4.3.1 Error Analysis

Finally, we have a more detailed look of the errors
that HanTa makes on the TüBa-D/Z corpus. Ta-
ble 6 shows the 10 most frequent errors. We see
that there are some frequent ambiguous words, like
als (as, than) and wie (as) that are hard to clas-
sify and already were reported by Giesbrecht and
Evert (2009) to be a main source of errors. For
most verbs the infinitive and first and third per-
son present tense plural are identical and in many
cases the correct class cannot be determined with-
out syntactic analysis. Furthermore, there are many
problems with proper nouns (NE). Here HanTa has
difficulties to decide whether an unknown word
is a proper noun (NE), a foreign word (FM) or a
common noun (NN). In addition, Tiger and TüBa-
D/Z also differ in the distinction between common
nouns and proper nouns. E.g. the words Osteu-
ropa (eastern Europe), Bundesnachrichtendienst
(Federal intelligence office) and EU-Kommission
(EU commission) are classified as proper names in
Tiger but as common names in TüBa-D/Z.
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Table 7: Average runtime of analyzing the first
1000 sentences from TüBa D/Z. All results are
averages from 7 runs.

Tagger Time
TreeTagger 2.85 s ± 0.501 s
Spacy 14.5 s ± 1.61 s
HanTa 10.7 s ± 0.102 s
HanTa (hybrid) 6.94 s ± 0.162 s
HanTa incl. lemm. 37.6 s ± 0.794 s
HanTa (hybrid) incl. lemm. 31.9 s ± 1.26 s

4.4 Run Time

We measured the time needed to tag and/or lemma-
tize the first 1000 sentences from TüBa D/Z in a
Jupyter Notebook on a Laptop with one Intel i7 2.7
GHz Processor and 8.0 GB RAM. The results are
given in Table 7. Currently the results of the mor-
phological analysis of each word is not stored. So
after PoS Tagging of the whole sentence the words
have to be analyzed again for lemmatization. More-
over only probabilities for each PoS and not the
lemmata are stored in the model, so for lemmatiza-
tion each word has to be analyzed, which is clearly
reflected in the run time. We report results for tag-
ging only (i.e. analyzing each word only once) and
for tagging and lemmatization.

5 Discussion

Looking at the lemmatization, we see that our
approach gives surprisingly good results: the ap-
proach in fact is quite naive, the morphological
classes are too coarse-grained and the model is
massively overgenerating and allowing for all kind
of nonsense analyses. Nevertheless, in most cases
the correct PoS and the correct lemma is predicted.
On the Tiger corpus HanTa is even slightly better
than the TreeTagger, on the TüBa D/Z Treebank
the TreeTagger outperforms HanTa with half a per-
cent. GermaLemma gives the best results on Tiger.
However, GermaLemma uses a dictionary derived
from the Tiger corpus, thus a comparison on these
data is not fair. On TüBA D/Z GermaLemma does
not perform very well, but this is due to the bad
performance of the trigram PoS tagger that was
used to provide GermaLemma with the PoS tags it
needs. The results from Spacy in both experiments
are much behind all other approaches.

HanTa’s accuracy on lemmatization (97.12 %) at
first glance seems to be below the results of LEM-

MING reported by Müller et al. (2015) (98.10 %).
However, these results cannot be compared directly.
In the first place, the reported result is on one split
from the Tiger corpus, but it is unclear, whether it
is a contiguous or a random split. More important,
we excluded all closed class words from the eval-
uation. Since most closed class words occur very
frequently and are easy to lemmatize, including
these words will improve the results.

In the evaluation of the PoS Tagger the first re-
markable observation is the result from the Tree-
Tagger that is noticeable below the evaluation re-
sults of Giesbrecht and Evert (2009). A possi-
ble source of difference could be the version of
the Tiger corpus. Probably, Giesbrecht and Evert
used version 1 of the Tiger corpus that consists of
0.7 ·106 tokens.

Here again the results from Spacy stay behind
the other taggers. Interestingly, the baseline trigram
tagger is almost as good as HanTa on the Tiger cor-
pus, but on the Hamburg Dependency Treebank
HanTa outperforms the baseline clearly. Thus, in-
deed, the careful splitting of a word into its stem
and suffix has an advantage over just using the last
letters of a word to guess its PoS.

6 Conclusion and future work

In this paper we have presented a simple approach
to German lemmatization. We have evaluated the
lemmatization on three different large corpora and
shown that the results are close to results that can be
obtained by state of the art tools and methods. Fur-
thermore, we have shown, that the use of HanTa’s
morphological analysis for unknown words in PoS
tagging is more useful than using arbitrary length
suffixes to guess the PoS. The PoS tagging us-
ing morphological analysis even outperforms other
widely used PoS taggers.

In order to make HanTa a useful tool, we will
work on the speed of the analysis, which is now
clearly below that of most other tools evaluated
here. Small improvements on the quality can be
achieved by further development of the script gener-
ating the training data. Here e.g. a better treatment
of adjectival nouns could help. Most interestingly,
however, would be to see the effect of using more
fine grained morpheme classes, including informa-
tion on number, gender, tense, etc.
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