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ABSTRACT
The Gravitational Search Algorithm is a swarm-based optimization
metaheuristic that has been successfully applied to many problems.
However, to date little analytical work has been done on this topic.

This paper performs a mathematical analysis of the formulae
underlying the Gravitational Search Algorithm. From this analysis,
it derives key properties of the algorithm’s expected behavior and
recommendations for parameter selection. It then confirms through
empirical examination that these recommendations are sound.

CCS CONCEPTS
• Theory of computation → Optimization with randomized
search heuristics; Theory of randomized search heuristics;
• Mathematics of computing → Optimization with random-
ized search heuristics; Bio-inspired optimization; • Computing
methodologies→ Randomized search.
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1 INTRODUCTION
Due to their effectiveness and generality, swarm-based metaheuris-
tics have become an important tool for the solution of global opti-
mization problems. For many of these algorithms, this effectiveness
has been demonstrated empirically many times over, but analysis
of their inner workings and the circumstances in which they can
be expected to be most effective often remains sparse [20]. As such,
parameter selection remains a challenge facing every user of these
optimization techniques.
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One such algorithm is the Gravitational Search Algorithm (GSA).
Since its invention by Rashedi et al. in 2009 [17], it has spawned a
fair number of variations and hybridizations [18] and was success-
fully applied to many different problems such as cancer research [1],
robotics [4], power-flow study [11], and others [18].

This paper derives key mathematical properties from GSA’s
definition and uses them to make prediction about its behavior. It
uses these predictions to make recommendations for parameter
selection and demonstrates by means of measurements on three
test functions that the predicted behavior is observable and that
the recommendations are sound.

The main contribution is a parameter selection technique for
GSA that enables its calibration in accordance with a desired result
precision and the extents of the search domain. Secondary con-
tributions are a method to estimate the viability of a selected set
of parameters as well as insights about the GSA swarm’s inner
workings that can be useful in the decision for or against the use
of GSA.

The remainder of this paper is structured as follows: Section
2 describes GSA and its mathematical underpinnings. These are
analyzed in section 3 to derive the aforementioned properties and
recommendations. Section 4 demonstrates the validity of these
recommendations by means of measurements on test functions.
Section 5 places the paper in its wider scientific context, and section
6 summarizes the results, draws final conclusions, and suggests
avenues for future research.

2 THE GRAVITATIONAL SEARCH
ALGORITHM

GSA is a swarm-based metaheuristic optimization method that is
(loosely [8]) inspired by the physical phenomenon of gravity. As
such, it attempts to locate a global minimum (or at least a deep local
minimum) in a fitness function f : Rn → R by moving a swarm of
N particles inRn iteratively overT steps. Better-positioned particles
are assigned a higher mass, and their movement is governed by
equations similar to those of Newton’s law of gravity.

To this end, GSA defines a swarm of particles P1, . . . , PN . Each
particle Pi = (®xi , ®vi ) is associated with a position ®xi and velocity ®vi .
In the reference implementation, ®xi is initially chosen at random
in a search domain F ⊆ Rn (usually some interval [a,b]n ) while
®vi is the zero vector [16].
During each step of the optimization process, ®vi and ®xi are up-

dated for every Pi , and f is evaluated at ®xi . The result is the position
®x∗ such that f (®x∗) is minimal among all considered positions.

We denote the state of particle Pi at time t as Pi (t) = (®xi (t), ®vi (t))
and fi (t) = f (®xi (t)), where 0 ≤ t ≤ T . In order to calculate the

30

https://doi.org/10.1145/3321707.3321774
https://doi.org/10.1145/3321707.3321774


GECCO ’19, July 13–17, 2019, Prague, Czech Republic Florian Knauf and Ralf Bruns

velocity update (i.e. acceleration) acting on the particles, every
particle Pi is assigned a massMi (t) according to

mi (t) :=
fworst(t) − fi (t)

fworst(t) − fbest(t)
(1)

Mi (t) :=
mi (t)∑N
k=1mk (t)

(2)

where fworst(t) = max1≤k≤N fk (t), fbest(t) = min1≤k≤N fk (t).
The force of attraction between particles Pi , Pj is then given by

®Fi j (t) = G(t)Mi (t)Mj (t)
®x j (t) − ®xi (t)

∥ ®x j (t) − ®xi (t)∥ + ε
(3)

where ε ist a very small number1 and

G(t) = G0e
−α t

T (4)

is the gravitational “constant” at time t .G0 and α are parameters
used for calibration.

The combined force ®Fi (t) acting on particle Pi is a randomly
weighted sum of the forces exerted on Pi by the heaviest (best-
placed) particles. Let K(t) = ⌈

(
1 − t

T
)
N ⌉ and Kbest(t) be the set of

indices of the K(t) heaviest particles at time t , then

®Fi (t) =
∑

j ∈Kbest(t ),i,j

Ri j (t) ®Fi j (t) (5)

where Ri j (t) is a random diagonal matrix with diagonal elements
uniformly distributed in [0, 1] (i.e. rk ,k ∼ U (0, 1)∀k). This means
that initially all particles exert force on all other particles while
at the end only the single heaviest particle does; the threshold is
lowered linearly over time [17].

The acceleration follows from this according to Newton’s second
Law of Motion:

®ai (t) =
1

Mi (t)
®Fi (t) (6)

Finally, the velocity and position of Pi are updated by

®vi (t + 1) := Ri (t)®vi (t) + ®ai (t) (7)
®xi (t + 1) := ®xi (t) + ®vi (t + 1) (8)

where again Ri (t) is a random diagonal matrix like Ri j (t). Parti-
cles that leave F are randomly reinitialized. The process continues
until t = T or a stop criterion is reached.

3 MATHEMATICAL ANALYSIS
This section analyzes the GSA construction mathematically, com-
plementing the analysis with experimental data where appropriate.
In doing so, it derives key properties of GSA’s behavior in order to
develop suggestions for parameter selection.

1ε ≈ 10−16 in the reference implementation [16]

3.1 Mass
Equation (2) is reminicient of selection mechanisms in other swarm
algorithms (e.g. attractor selection in Glowworm Swarm Optimiza-
tion [19]) and genetic algorithms (e.g. fitness-proportional roulette
wheel selection [10]). Here as there, its purpose is to assign greater
but not total influence to well-positioned search particles in order
to promote the exploitation of their discoveries without immediate
abandonment of worse-positioned particles’ exploratory potential.

In GSA, (2) has three obvious (but crucial to sections 3.2, 3.3)
effects: For all t ,

min {Mi (t), 1 ≤ i ≤ N } = 0 (9)
max {Mi (t), 1 ≤ i ≤ N } ≤ 1 (10)

N∑
i=1

Mi (t) = 1 (11)

Note that (6) can be rewritten withoutMi (t) in the denominator
so that ®ai (t) is not undefined in the case described by (9). There is
a special case when the swarm is entirely located within a plateau
in the fitness function so that fi (t) = fj (t) for all 1 ≤ i, j ≤ N and
(1) yields undefined results.2 In this case, all particles are equally
well positioned and should be assigned the same mass, so imple-
mentations should setMi (t) =

1
N ∀ i to be consistent with (11).

More importantly, (1) is invariant under linear transformation
of f : let f ′ = af + b, then

m′
i =

f ′worst − f ′i
f ′worst − f ′best

=
afworst + b − afi − b

afworst + b − afbest − b

=
a(fworst − fi )

a(fworst − fbest)
=

fworst − fi
fworst − fbest

=mi (12)

Because this is the only place where f is evaluated, the behavior
of GSA as a whole is invariant under linear transformation of f .

3.2 Force and Acceleration
One place in which GSA diverges significantly from the physics
that inspired it is (3). Gauci et al. note that where the gravitational
force exerted in Newtonian physics decreases quadratically with
distance, in GSA it does not decrease with distance at all [8].

In addition to this, ®Fi (t) tends to have greater magnitude when
the individual force vectors ®Fi j (t) have similar directions, which is
more the case for particles at the outer limits of the swarm than
those at its center. This means that outlier particles are those most
strongly drawn towards the center of the swarm, in stark contrast
to natural gravity. As a result, in GSA the swarm is unable to split
into subswarms and exploit multiple optima simultaneously.

Figure 1 shows this effect on the Rastrigin test function in R2,
with G0 = 20,α = 20,N = 50,T = 1000. Despite an abundance
of local minima in the fitness function, the swarm maintains its
integrity. It does not exploit multiple minima simultaneously but
sprawls as one entity over a quickly contracting area. In doing so,
it may wander from optimum to optimum but never disintegrates.

2This can, for example, be an issue when GSA is used to handle discrete problems
with nearest-integer coding [13].
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Figure 1: Collapsing swarm in the 2D Rastrigin function

Figure 2 shows the trajectories of 15 particles during the step
at time t = 20 (center) alongside the swarm configuration at the
beginning of that step (left). As predicted, particles tend to cross
through the central region of the swarm rather than follow orbital
motion, and particles further removed from that central region tend
to have longer trajectories. Often particles jump directly from one
side of the swarm to the other.

Also shown is the trajectory of a single particle over the next
15 steps (right). The particle rarely moves in the same direction on
consecutive steps and almost always undergoes a radical change in
direction. This is because once Pi has jumped across the swarm, ®vi
and ®ai have roughly opposite directions. If the influence of ®vi is not
dampened enough by Ri in (7), ®ai and ®vi nearly cancel each other
out, keeping the particle in the same general area for two consecu-
tive steps. However afterwards ®vi is small, and ®ai determines the
next step alone. Consequently, particle movement is dominated by
®ai , and ®vi is unable to meaningfully accumulate magnitude.

Apart from these observations, we can derive upper bounds for
the force and acceleration vectors throughout the optimization
process. Let x̃i j (t) =

®x j (t )−®xi (t )
∥ ®x j (t )−®xi (t ) ∥+ε

, then (5) can be rewritten as

®Fi (t) = G(t)Mi (t)
∑

j ∈Kbest(t ),i,j

Mj (t)Ri j (t)x̃i j (t) (13)

Observing (11) and noting that ∥x̃i j (t)∥ ≤ 1, for all i, t

∥ ®Fi (t)∥ ≤ G(t)Mi (t) (14)
and therefore with (6)

∥ ®ai (t)∥ ≤ G(t) (15)
This insight can be extended to the expected value of ∥ ®ai (t)∥.

Note that the distribution of force is not invariant under rotation,
since the transformation Ri j (t)x̃i j (t) is not spherically symmetrical.
In particular, the expected length of Ri j (t)x̃i j (t) varies depending
on the angle between x̃i j (t) and the axes of the coordinate system:

Let x̂i j (t) =
®x j (t )−®xi (t )

∥ ®x j (t )−®xi (t ) ∥
and Xk ∼ U (0, 1), 1 ≤ k ≤ n so that

x̂i j (t) ≈ x̃i j (t) and

∥Ri j (t)x̃i j (t)∥ ≈ ∥Ri j (t)x̂i j (t)∥ =

√√√ n∑
k=1

X 2
k x̂i j ,k (t)

2 (16)

where x̂i j ,k (t) denotes the k-th component of x̂i j (t).

Note here that x̂i j (t) is a unit vector. The expected value of (16)
varies between the extremes when x̂i j (t) is one of the axes of the
coordinate system and the case when x̂i j (t) =

1√
n
(±1, . . . ,±1)T ,

i.e. when the angle between x̂i j (t) and the closest axis is maximized.

In the former case, ∥Ri j (t)x̂i j (t)∥ =
√
X 2
k = Xk for some k and

E
(
∥Ri j (t)x̂i j (t)∥

)
= E (Xk ) =

1
2 . In the latter case, ∥Ri j (t)x̂i j (t)∥ =√

1
n

∑n
k=1 X

2
k . Let Y =

1
n

∑n
k=1 X

2
k . Since E(X

2
k ) =

1
3∀k is familiar

as the 2nd raw moment of U (0, 1), E(Y ) = 1
n

∑n
k=1 E(X

2
k ) =

1
3 . It

follows that

E(
√
Y ) =

√
E(Y ) − Var(

√
Y ) ≤

√
E(Y ) =

1
√
3

(17)

through the algebraic variance formula. Since Xk are i.i.d., in
accordance with the central limit theorem Y approaches a normal
random variable with shrinking Var(Y ) = 1

nVar(X
2
k ) =

4
45n as n

grows.3 Var(
√
Y ) shrinks accordingly from Var(

√
Y ) = 1

12 for n = 1,
when

√
Y = X1. Therefore

1
2
≲ E

(
∥Ri j (t)x̃i j (t)∥

)
≤

1
√
3

(18)

In combination with (13) and (6), this means that even if all
Ri j (t)x̃i j (t) have exactly the same direction,

E
(
∥ ®Fi (t)∥

)
≤

G(t)Mi (t)
√
3

(19)

E (∥ ®ai (t)∥) ≤
G(t)
√
3

(20)

Furthermore, at the end of the optimization process when only
the best-positioned particle Pj exerts influence on Pi ,

®ai (T ) = G(T )Mj (T )Ri j (T )x̃i j (T ) (21)
Since Pj is the heaviest particle, 1

N ≤ Mj (t) ≤ 1, and therefore

G0e−α

2N
=
G(T )

2N
≲ E (∥ ®ai (T )∥) ≤

G(T )
√
3
=
G0e−α
√
3

(22)

for all but Pj itself, where ®aj (T ) = ®0. Given the observation that
particle movement is dominated by short-term acceleration rather
than a build-up of velocity over several steps, equations (20) and
3Var(X 2

k ) = E(X
4
k ) − E(X 2

k )
2 = 4

45 . E(X
4
k ) =

1
5 is the 4th raw moment ofU (0, 1).
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Figure 2: Swarm at t = 20 (left), sample trajectories during the next (center) and following 15 iterations (right)

(22) show that the progression ofG(t) governs particle mobility. Its
effect is akin to that of the mutation rate in evolutionary algorithms.

In the same vein, (22) relates to the step size near the end of the
optimization process. This limits the precision to which an optimum
can be located, and parameters G0, α must be chosen accordingly.

3.3 Velocity
The particle velocity ∥ ®vi (t)∥ tends to decrease over the course of
the optimization, and this would be the case even if all Ri j (t)x̃i j (t),
Ri (t) ®vi (t) had the same direction: the damping of ®vi (t) in (7) uses
the same mechanism considered in section 3.2 up to (18), which
implies 1

2 ∥ ®vi (t)∥ ≤ E(∥Ri (t) ®vi (t)∥) ≤ 1√
3
∥ ®vi (t)∥. LetXk , 0 ≤ k ≤ t

denote independent random variables with E(Xk ) =
1√
3
, then from

(7) and the triangle inequality we know

∥ ®vi (t + 1)∥ ≤

t∑
k=0

(
∥ ®ak (t − k)∥

k∏
m=1

Xm

)
(23)

Since all Xm are independent, E(
∏k

m=1 Xm ) = 3−
k
2 . Since they

are also indepedent from all ∥ ®ak (t − k)∥, (20) yields

E (∥ ®vi (t + 1)∥) ≤
t∑

k=0

(
G(t − k)

√
3

3−
k
2

)
(24)

Let η = e
α
T so that G(t − k) = G0ηk−t , then

E (∥ ®vi (t + 1)∥) ≤
G0
√
3
η−t

t∑
k=0

(
η
√
3

)k
=

G0
√
3
·

√
3η−t − 3−

t
2 η

√
3 − η

≤
G0η−t
√
3 − η

=
G0e

−α t
T

√
3 − e

α
T

(25)

This means that if α ≪ T , for example if α < T ln(2/
√
3) (which

for T = 1000 is the case when α ≲ 143), then
√
3 − e

α
T > 1√

3
and

E (∥ ®vi (T )∥) ≤
G0e

−α T−1
T

√
3 − e

α
T
<
√
3G0e

−α T−1
T (26)

For larger values of α , G(t) is even lower, and the accumulated
velocity is lower as well. As such, if α is sufficiently large, then

the swarm will be approximately stationary towards the end of the
optimization.

Note that this does not prove convergence, and indeed if G0 is
very small in relation to the extent of F , the swarm’s initial mobility
may already be too low for it to collapse. However, in the event
that the swarm is initially mobile enough to collapse, its inability
to split suggests that it can be expected to converge.4

An upper bound to the expected distanceW traveled by indi-
vidual swarm particles over the course of the optimization follows
from (25) through

E(W ) =

T−1∑
t=0

E (∥ ®vi (t + 1)∥) ≤
T−1∑
t=0

G0e
−α t

T
√
3 − e

α
T

=
G0

√
3 − e

α
T

T−1∑
t=0

e−α
t
T =

G0
√
3 − e

α
T

1 − e−α

1 − e−
α
T

=
G0e

α
T (1 − e−α )(√

3 − e
α
T

) (
e
α
T − 1

) (27)

If α is large enough that e−α ≈ 0 and α ≪ T so that e
α
T ≈ 1,

then

E(W ) ≲
G0(√

3 − 1
) (

e
α
T − 1

) (28)

is a justifiable approximation that can be used to check the plau-
sibility of a selection of G0 and α .

3.4 Parameter Selection
Given this analysis, parameter selection for GSA has two main
objectives:

(1) maximize swarm mobility, and
(2) ensure some level of result precision.
T and N determine the cost of the optimization: f is evaluated

(T + 1)N times. The derivation of (26) and (28) depends on α ≪ T ,
so parameters that depend on the findings presented here should
include a large enough T to meet the conditions mentioned there.

4We have never observed an optimization process in which the GSA swarm did not
converge except with extreme choices of G0 , α (see section 4.1).
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Furthermore, (5) implies that GSA ∈ Ω(N 2), and as such N should
not be extremely large.5

G0 controls the magnitude of the acceleration at the beginning of
the optimization process and must be chosen as large as possible to
maximize swarm mobility. On the other hand, intuitivelyG0 should
not be so large that most particles immediately leave F and are
randomly reinitialized. However, a moderate overestimation of G0
is not a serious problem: in this event GSA behaves like a random
search until G(t) has fallen to a sensible level, at which point GSA
continues with its normal behavior (see section 4.2).

Let D be the distance from one side of the search domain to the
other. We desire that E (∥ ®ai (0)∥) ≈ D for an outlier particle in the
initial, random swarm. Then (20) suggests

G0 >
√
3D (29)

Note that D needs to be somewhat meaningful in all directions.
If the search domain is highly elongated,6 there is no choice of G0
that makes the swarm mobile enough to cross the search domain
in a longer dimension without also making it too mobile to stay
within the confines of a shorter dimension. If F is elongated, im-
plementations should distort f in such a way that the distorted
search domain is approximately hyperspherical (or, more realisti-
cally, hypercubical) and optimize the distorted function or modify
the treatment of out-of-bounds particles.

α controls the precision of the result in F . Let δ be the desired
precision, then (22) and (26) suggest that α satisfy

− ln
2Nδ

G0
≤ α ≤ − ln

δ
√
3G0

(30)

The observation in section 3.2 that ®vi does not meaningfully
accumulate magnitude suggests further that the upper bound stated
in (26) is unlikely to be very tight. It is therefore sensible to choose
α towards the lower bound of (30).

A sanity check for the choice of α is provided by (28): It is desir-
able that the swarm particles be mobile enough to be able to cross
the search domain several times, i.e. that E(W ) be several times
larger than D. The bound stated in (28) is again likely to be loose,
therefore the chosen set of parameters should satisfy

G0(√
3 − 1

) (
e
α
T − 1

) ≫ D (31)

If it does not do so, it is possible to relax the precision require-
ments (decrease δ ), increase the computing budget (increase T ) or
choose a smaller search domain (decrease D, G0, and α ).7 Section
4.1 refines this condition to (32) using experimental results.

Finally, ε in (3) is meant to avoid division by zero but not to have
a noticeable effect on GSA’s behavior. Since the analysis leading to
(30) requires that x̂i j (t) ≈ x̃i j (t), ε should be chosen small enough to
be negligible compared to E (®ai (T )), i.e. several orders of magnitude

5The threshold above which this influence becomes dominant depends on the compu-
tational complexity of f . For interesting problems, N need not be very small.
6e.g. [0, 1] × [0, 1000]
7It is also possible to consider completely different G(t ) schedules, but that is beyond
the scope of this paper.

smaller than δ . It is also possible to remove ε from (3) and set
x̃i j (t) = ®0 whenever ∥ ®x j (t) − ®xi (t)∥ = 0.8

4 EXPERIMENTAL CONFIRMATION
Section 3 made predictions about the behavior of GSA and rec-
ommendations for parameter selection. This section tests these
predictions and recommendations empirically.

Section 4.1 measures the effect of α on result precision to demon-
strate the validity of (22), (30) and augments (31) with experimental
results. Section 4.2 shows that the effect of G0 on particle mobility
is in line with the considerations leading into section 3.4 and up to
(29). Finally, section 4.3 establishes a link between particle mobility
and the quality of detected optima in highly multimodal problems.

In all experiments, we useT = 1000,N = 50 (these are the values
used in the original GSA paper [17]), ε = 0, and x̃i j (t) is forced to ®0
whenever ∥ ®x j (t) − ®xi (t)∥ = 0.

4.1 Precision
We use the sphere function fsphere(®x) = ∥ ®x ∥2 to measure the preci-
sion to which GSA is able to locate an optimum once it has found
its vicinity. The sphere function is unimodal and has no complicat-
ing features [6], so finding the vicinity of the optimum is an easy
challenge, and the exploitation of that optimum can be observed
with minimal interference from other factors.

Table 1 shows the distances of the median result from the opti-
mum (median error) in F = [−100, 100]n for n ∈ {2, 10, 30, 50, 100},
α ∈ {2, 5, 10, 20, 30, 50, 80} out of 101 repetitions each. D is the
extent of F along one of the main axes and G0 set according to
suggestion (29), i.e. D = 200,G0 = 2D = 400. Alongside the results
are shown the upper and lower bounds for E (∥ ®a(T )∥) predicted by
(22) and the sanity indicator provided by (31), expressed in relation
to D.

For most scenarios, the median error GSA achieves is well below
the predicted upper bound for E (∥ ®a(T )∥). Illustrating Bellman’s
curse of dimensionality [2], GSA achieves higher precision in sce-
narios of lower dimensionality: for n = 2 and n = 10, the median
error is consistently below even the lower bound for E (∥ ®a(T )∥),
albeit barely so in the case of n = 10 and not overwhelmingly so in
the case of n = 2. For n = 30, the results are close to but consistently
above the lower bound, and for higher dimensionalities they fall
comfortably into the middle of the interval for low values of α until
they suffer a sharp decline in quality when α = 80 for n = 30,
α ≥ 50 for n = 50 and α ≥ 20 for n = 100. It is around these points
that the sanity indicator falls near n.

These failing scenarios are marked red and italic in table 1. GSA’s
failure in them is due to a combination of the early loss of swarm
mobility through a quickly falling G(t) and the problem’s higher
dimensionality – there are simply more directions for the individual
force vectors ®Fi j to have, so they are less likely to reinforce each
other. In these scenarios, the swarm often fails to collapse,9 in
which case the minimum cannot be effectively exploited. As such
the sanity condition (31) should be considered in relation to the

8This is the authors’ preferred solution because it implies x̂i j (t ) = x̃i j (t ), in which
case the approximate lower bounds in (18) and (22) become simply lower bounds.
9For n = 100, α = 20, it collapsed in 4 out of 101 repetitions, with result errors
ranging from 8.999 · 10−8 to 1.024 · 10−7 . These are within the bounds of (22).
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Table 1: Median result precision on fsphere in Rn for different values of α , 101 repetitions

Median distance to optimum E (∥ ®a(T )∥) acc. to (22) G0(√
3−1

) (
e
α
T −1

)
D

α n = 2 n = 10 n = 30 n = 50 n = 100 Lower bound Upper bound

2 8.508 · 10−3 2.555 · 10−1 8.792 · 10−1 1.406 2.551 5.413 · 10−1 31.254 1364.66
5 5.018 · 10−4 1.258 · 10−2 4.572 · 10−2 7.495 · 10−2 1.415 · 10−1 2.695 · 10−2 1.556 545.05
10 3.346 · 10−6 9.193 · 10−5 3.323 · 10−4 5.503 · 10−4 1.220 · 10−3 1.816 · 10−4 1.048 · 10−2 271.84
20 1.667 · 10−10 4.269 · 10−9 1.683 · 10−8 3.375 · 10−8 3.749 · 10−1 8.245 · 10−9 4.760 · 10−7 135.24
30 9.676 · 10−15 2.134 · 10−13 9.381 · 10−13 2.057 · 10−12 5.48 3.743 · 10−13 2.161 · 10−11 89.71
50 2.436 · 10−23 5.384 · 10−22 2.895 · 10−21 9.933 · 10−1 20.198 7.715 · 10−22 4.454 · 10−20 53.29
80 2.997 · 10−36 5.665 · 10−35 3.909 · 10−1 8.13 35.648 7.219 · 10−35 4.168 · 10−33 32.80

dimensionality of the problem. The measurements suggest that
G0,α should satisfy

G0(√
3 − 1

) (
e
α
T − 1

)
D

≫ n (32)

in order to have reasonable hope for success even with simple
problems.10

The conclusion is that the bounds in (22) are a good predictor of
result precision, provided that the swarm is mobile enough to find
and effectively exploit an optimum. Especially for problems of high
dimensionality, high values of α can prevent precisely this, and care
should be taken not to demand unreasonable levels of accuracy.

4.2 Swarm mobility
The extended Rosenbrock “banana” function [12]

frosenbrock (®x) =
n−1∑
i=1

[
100

(
xi+1 − x2i

)2
+ (1 − xi )

2
]

(33)

is useful to test the effects of G0 on swarm mobility. frosenbrock
in R2 is unimodal with a minimum at (1, 1)T and features a deep
parabolic valley [6] that is easy to find but difficult to traverse. For
dimensionalities 3 ≤ n ≤ 7, (33) has two local minima and contains
many saddle points with narrow ranges of descent directions [12].
Once located, these saddle points are difficult to escape for many
optimization algorithms [12].

Figure 3 shows a typical progression of the GSA swarm on
frosenbrock in two dimensions. The swarm collapses at some point
the valley, usually near the origin,11 then crawls as a unit towards
the optimum at (1, 1)T (marked with a black cross). As it does so,
G(t) falls, the swarm contracts and loses mobility. Towards the
end of the optimization, progress slows to negligible levels, and
the swarm is never able to reach the optimum. This highlights the
importance of swarm mobility for success on frosenbrock.

Table 2 shows the median fitness achieved by 1001 repetitions12
of GSA on frosenbrock in R2 and R7 for various G0 alongside the
average percentage of particles that were flung out of F and ran-
domly reinitialized. δ = 10−10 is fixed and α set to − ln 2Nδ

G0
so

that G(T ) is equal in all scenarios. The optimization takes place in

10Note that this condition should be considered necessary but not necessarily sufficient.
11This may be related to center-seeking bias in GSA, see Davarynejad et al. [5].
12The sample is larger here because the results were less stable than in section 4.1.

Table 2: Median fitness, average percentage of displaced par-
ticles on frosenbrock for various G0, 1001 repetitions

n = 2 n = 7

G0 α Med. Fit. % disp. Med. Fit. % disp.

2 19.114 5.396 · 10−2 1.92 · 10−5 3.298 0
4 19.807 5.054 · 10−2 0.0181 3.187 6 · 10−5
7.09 20.379 3.847 · 10−2 0.0316 3.115 0.0714
8 20.5 2.783 · 10−2 0.0778 3.098 0.103
16 21.193 1.195 · 10−2 1.326 3.01 0.602
32 21.886 7.176 · 10−3 4.188 2.913 3.3
64 22.58 6.104 · 10−3 7.084 2.826 6.248
128 23.274 5.305 · 10−3 9.83 2.769 9.02
256 23.966 4.258 · 10−3 12.418 2.685 11.616
512 24.659 3.985 · 10−3 14.854 2.632 14.068
1024 25.352 3.518 · 10−3 17.152 2.574 16.376
2048 26.045 3.324 · 10−3 19.33 2.539 18.564
4096 26.738 2.863 · 10−3 21.388 2.501 20.634

F = [−2.048, 2.048]n . The values considered for G0 are the pow-
ers of 2 from 2 to 4096 and the lower bound suggested by (29) for
D = 4.096 (G0 ≈ 7.09).

For low values of G0, displacements are rare; with G0 ≈ 7.09,
fewer than 0.1% of particles are displaced on average. Soon beyond
this point, the percentage of displaced particles increases sharply.
For n = 7, this increase happens noticeably later than for n = 2.

This is in line with the considerations in section 3.4 leading up
to (29): the suggested bound is a good ballpark estimate of the point
beyond which increases ofG0 cause significant amounts of particle
displacements, which in turn cause fitness function evaluations
at random points and are not generally desirable. This increase
happens later for higher dimensionalities because F ’s inscribed
hypersphere13 (whose diameter is D) covers less of its volume as
n grows and particles that are moved beyond the hypersphere but
remain in F are not displaced.

However, on frosenbrock the result GSA achieves continues to
improve as G0 increases well beyond this point. The best median
fitness achieved in these measurements is for G0 = 4096, a ludi-
crously high value in relation to the search domain that causes more

13For simplicity, the effects of (18) are neglected here.
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Figure 3: Swarm movement on frosenbrock in R2, G0 = 16,α ≈ 21.193

than a full fifth of the fitness function evaluations to take place at
random positions. The measurements in section 4.3 show that the
effect is not universal, and the exact reasons for it are unclear. We
suspect that it is related to the specific challenges of the Rosenbrock
function, where it is difficult for the swarm to move towards the
optimum and mobility is paramount.

Figure 4 shows the median best-so-far fitness over the course
of the optimizations with G0 ∈ {1, 7.09, 32, 4096} and n = 7. Also
shown is the samemedian over 1001 random searches that evaluated
N = 50 points in F per iteration. Swarms with lower G0 achieve
better early results because they collapse quickly, but they are
overtaken at a later time because their mobility is exhausted earlier.

WithG0 = 4096, GSA behaves like a random search for the first
≈ 200 iterations, at which pointG(t) has dropped to around 20 and
the usual behavior takes over. This pattern is common to all cases
with very high values of G0, and higher values of G0 correspond
with a longer random-searching phase. In these optimizations, all
or nearly all particles are moved past the boundaries of F and
randomly repositioned in every iteration until G(t) is low enough.

4.3 Mobility and multimodality
Since the GSA swarmmoves from optimum to optimum rather than
split into subswarms, mobility has a profound effect on its ability to
minimize multimodal functions. We consider the Rastrigin function

frastrigin (®x) =
n∑
i=1

[
x2i − 10 cos(2πxi ) + 10

]
(34)

in F = [−5.12, 2.56]n (thus D = 7.68) as a highly multimodal
problem whose optimum is significantly removed from F ’s geo-
metric center to minimize the possible influence of center-seeking
bias [5]. The challenge is to identify the global (or at least a good
local) minimum among the multitude of local minima.

Table 3 shows the median and average fitness achieved by 1001
repetitions of GSA on frastrigin inR30 for variousG0 and the average
percentage of displaced particles. δ is fixed to 10−5,α set to− ln 2Nδ

G0
as before. The considered values for G0 are the powers of 2 from 8
to 4096,

√
3D ≈ 13.302 and two points of interest:

√
3D ′ ≈ 72.859

whereD ′ =
√
30D is the diameter of F ’s circumscribed hypersphere,

and 100 for closer spacing near the optimal G0.
Of the values considered, the best result is achieved forG0 = 100,

larger than
√
3D ′ but not overwhelmingly so. The median fitness

Table 3: Average and median fitness, average percentage of
displaced particles on frastrigin in R30, various G0, 1001 rep.

G0 α Avg. Fitness Med. Fitness % displaced

8 8.987 41.274 40.793301 6.194 · 10−5
13.302 9.496 30.955 30.843710 0.03
16 9.68 25.98 25.868925 0.118
32 10.373 19.326 18.904217 1.516
64 11.067 19.034 18.904217 5.567
72.859 11.196 18.956 18.904217 6.704
100 11.513 18.49 18.904207 9.258
128 11.76 18.918 18.904212 11.145
256 12.453 19.694 18.904217 16.028
512 13.146 19.999 18.904217 20.383
1024 13.839 20.229 19.899171 24.293
2048 14.532 21.007 19.899176 27.82
4096 15.226 21.273 20.894135 31.023

is, however, virtually identical for G0 = 32 through 512; G0 = 100
has the best result by a margin smaller than the target precision δ ,
and as such this difference is unlikely to be meaningful. This may
suggest that D ′ is more relevant to a good selection of G0 than D,
but further research is necessary to substantiate this claim.

Unlike frosenbrock, results on frastrigin deteriorate for larger val-
ues of G0, although the impact of an underestimated G0 is more
severe than that of an overestimation. This result is in line with the
analysis in section 3.4.

5 RELATEDWORK
To date only a handful of publications have analyzed GSA in a
manner comparable to this paper, and to the authors’ knowledge
none have proposed a method of parameter selection other than
meta-optimization.

One of the first was by Ghorbani et al. in 2012 [9], who show
that the GSA swarm would become stationary if t increased past
T towards infinity. The idea to derive upper limits for relevant
quantities (such as (14), (15)) has a precedent there.

In 2014, Davarynejad et al. investigated center-seeking and ini-
tialization-region biases in GSA and suggested a mitigating modifi-
cation [5]. Their analysis is largely empirical.
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Figure 4: Median fitness for various G0 over time on frosenbrock in R7

In 2016, Farivar and Shoorehdeli proved the existence of Lyapu-
nov-stable equilibrium points in GSA and suggested a modification
that makes these equilibrium points asymptotically stable (i.e., guar-
antees local convergence to the equilibrium point) [7].

In 2017, Pelusi et al. presented a method of parameter control
for GSA in which α is tuned over time by a fuzzy controller whose
membership functions are in turn optimized by a separate meta-
heuristic [15].

All these analyses fit in a wider context of similar research done
for other swarm-based metaheuristics, starting with Ozcan and
Mohan’s 1999 analysis of the Particle Swarm Optimization [14] that
Clerc and Kennedy refined in 2002 to introduce a popular method
of parameter selection [3]. Similar work exists for other swarm
algorithms and aspects of optimization metaheuristics [20]; this
work is far from exhaustive but too numerous to list here.

6 CONCLUSION
This paper set out to discover key properties of GSA and provide its
users with a method of parameter selection. Through mathematical
analysis it uncovered the following properties:

• GSA is invariant to linear transformations of f ,
• its swarm is unable to split into subswarms and exploit sev-
eral optima simultaneously,

• particles do not usually accumulate velocity to any meaning-
ful degree, and their movement is dominated by short-term
influences; particle mobility is controlled by G(t),

• unless α is very small, the swarm will be approximately
stationary towards the end of the optimization,

• the result precision of a successful application of GSA is
predicted by (22),

• a loose upper bound for the expected travel distance of
swarm particles is given by (27),

• an overestimation ofG0 causes less severe problems than an
underestimation, and

• the search domain should have similar extents in all direc-
tions or the treatment of out-of-bounds particles be modified.

It used these to derive recommendations for parameter selection
along with a sanity check for a given set of parameters and demon-
strated them to be sensible. The recommendations are detailed in
section 3.4, and the sanity check is refined in section 4.1 to (32).

Research, as ever, does not stop with this paper. Here the focus
was on the main variant of GSA, but the methods of analysis are, in
principle, applicable to many variations as well and could be used
to derive methods of parameter selection in these contexts.

Nor do we claim to have spoken the last word on mainline GSA:
(27) gives a loose bound that could be improved in the future, which
in turn would improve the parameter sanity check (32), and (29)
only states a lower bound for G0 when an upper bound would be
desirable – although the measurements in section 4.2 suggest that
such a bound may be difficult to determine for some problems.

Nevertheless, this paper gives users of GSA the tools to tune the
algorithm for good performance, and those contemplating the use
of GSA may find the list of derived properties helpful when trying
to determine whether or not GSA is a good fit for their problem.
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