
Situation-Aware Energy Control by Combining Simple
Sensors and Complex Event Processing

Leonard Renners and Ralf Bruns and Jürgen Dunkel 1

Abstract. In recent years, multiple efforts for reducing energy us-
age have been proposed. Especially buildings offer high potentials
for energy savings. In this paper, we present a novel approach for in-
telligent energy control that combines a simple infrastructure using
low cost sensors with the reasoning capabilities of Complex Event
Processing. The key issues of the approach are a sophisticated se-
mantic domain model and a multi-staged event processing architec-
ture leading to an intelligent, situation-aware energy management
system.

1 Introduction
In recent years, global warming, greenhouse effect, as well as escalat-
ing energy prices have lead to enhanced efforts for reducing energy
usage and carbon emission. Especially, buildings offer high poten-
tials in reducing energy consumption: electric lighting, heating and
air conditioning are highly energy-intensive and not well-adjusted to
actual usage necessities.

In many buildings, there are already first approaches of more ef-
fective control mechanisms to improve energy consumption. Typi-
cally, light in public areas like corridors is controlled by using motion
sensors instead of classic switches, preventing unnecessarily turned
on lamps. On the contrary, heating is mostly controlled on base of
fixed heating plans that determine the heating period by a predefined
timetable. Often the heating schedule is not related to single rooms
but to the entire building or larger parts of it (e.g. total floors). Over-
all, this leads to the situation that many rooms are heated although
they are not in use, thus causing a huge waste of energy. In summary,
we can conclude that in general energy control of buildings is not
situation-aware.

In the following we present an approach for intelligent energy
control that combines a simple infrastructure using cheap sensors
with event stream processing of the plain sensor data. Our approach
should reach the following goals:

(a) Individual energy control for every single room (instead of con-
sidering the entire building).

(b) Low-cost solution by utilizing the existing infrastructure as well
as cheap and simple sensors (as opposed to new, sophisticated
and expensive sensors).

(c) Situation awareness: the energy consumption should be con-
trolled according to actual usage (in contrast to predefined and
fixed schedules).

(d) Proactive control: the control mechanisms should exploit the
knowledge about normal room occupancy, for instance based on
room schedules and normal user behavior patterns.

1 Hannover University of Applied Sciences and Arts, Germany, email:
forename.surname@fh-hannover.de

To achieve these goals, our approach uses two different models:

1. A Semantic Domain Model describes the expert knowledge about
the domain, i.e. in our case the structure of the building and its
expected usage.

2. An Event Model defines all those events occurring in the building
that are relevant for energy control. Different event sources can be
distinguished: low cost sensors yield information about the cur-
rent incidents in a building. Furthermore, domain-specific events
are created by various knowledge sources, like heating plans or
lectures schedules.

To react on relevant situations in real-time we apply Complex
Event Processing (CEP) that has been proposed as a new archi-
tectural paradigm for in-memory processing continuous streams of
events. CEP is based on declarative rules to describe event patterns,
which are applied to the event stream to identify relevant situations
in a certain domain.

The integration of the Semantic Domain Model with the Event
Model allows the enrichment of event processing rules with domain
knowledge. It is a key issue of our approach and provides an intelli-
gent sensor data processing, leading to a reasonable, situation-aware
heating and energy management.

The remainder of the paper is organized as follows. The next sec-
tion 2 describes an application scenario for our approach. In section
3 the related work is discussed. In the subsequent section 4 we intro-
duce our approach using CEP techniques to implement an intelligent
energy management. Section 5 shows an example set-up and yields
an evaluation. The final section 6 contains some concluding remarks
and provides an outlook to future directions of research.

2 Scenario: Energy Control in Buildings

We selected the energy management of buildings as our application
scenario. In particular, the scenario helps to discuss in some more de-
tail the benefits that intelligent energy control provides. As already
mentioned in the introduction, buildings have high potentials in im-
proving energy efficiency, since they have many energy consumer
units that are often unnecessarily turned on. In the following, we will
use an university campus as a concrete example of our approach.
Universities exhibit the following features that are common to most
public buildings and which will influence energy management sig-
nificantly:

• Various room types with different energy consumption profiles
can be distinguished: For instance, server rooms have to be air
conditioned below 20 degrees Celsius. Instead, offices and lecture
rooms must be heated to achieve a temperature above 22 degrees,



but normal storage room must be neither cooled nor heated. In the
following, we will focus on office and lecture rooms.

• Non-uniform usage profiles: Each room exhibits its individual oc-
cupancy depending on the room type and the specific behavior
of different user groups. For instance, lecture rooms are occupied
according to a prefixed schedule that might be changed only ex-
ceptionally. Instead, offices or cube farms are used according to
the personal behavior of their occupants including absences due
to vacation times or illness.

• Spontaneous occupancies: Furthermore, rooms are spontaneously
and individually used, e.g. due to ad-hoc meetings, rescheduled
lectures or unplanned project work. Note that these individual oc-
cupancies are inherently unpredictable.

To deal with non-uniform and spontaneous usage of rooms, which
deviates significantly from predicted average occupancies, an intelli-
gent and situation-aware energy control mechanism is required.

On the one hand, expert knowledge about the building and the
behavior of its users should be exploited for adjusting the energy
control to realistic usage patterns.

On the other hand, actual behavior must be monitored to react ad-
equately on spontaneous and individual usage actions. Especially, if
unexpected occupancies or periods of absence are detected in a cer-
tain room, the corresponding energy consumption units (like heating
and lighting) can be switched on or off, respectively.

To provide an individual control, we have to observe the incidents
and states in every single room. To achieve this goal we will incor-
porate already installed sensors in the building as well as we will
equip the rooms with simple and cheap sensors: motion sensors for
detecting movements, temperature sensors to measure the heating,
and contact switches that register when a door or window is opened
or closed, respectively.

3 Related Work

Our approach is based on the exploitation of fine-grained sensor data
emitted by networks of simple sensors in buildings. Sensor networks
possess intrinsic problem properties that are perfectly addressed by
complex event processing. Several published approaches prove the
suitability of event processing for sensor networks (e.g. [6, 9]).

Determining the current status of usage is an important topic in
smart homes and intelligent facility management systems. Several
approaches have shown how occupancy detection can be used to im-
plement more effective and powerful behaviour [1, 2, 7].

There is also increasing interest using CEP technologies for en-
ergy management. Holland-Moritz and Vandenhouten examined dif-
ferent solutions for an intelligent management system (in general)
and identified CEP as one very suitable and suggestive concept [5].

Xu et al. introduced a CEP approach with ontology and semantics
supporting occupancy detection for an intelligent light management
system [10, 12].

Another approach in a similar direction was made by Wen et al.
within their industrial experience report about using CEP for energy
and operation management, while focussing on predictive elements
and adaptable behavior [11].

In summary, on the one hand some approaches address energy
control adapted to the current occupancy/usage, on the other hand
first approaches report the employment of event processing technol-
ogy in energy management.

However, none of them is presenting a comprehensive approach of
real-time situational awareness for the whole energy management,

based on the integration of an extensive semantic model of the ap-
plication domain in the event processing reasoning process. In par-
ticular, the investigated control of the heating process requires more
sophisticated semantic models and more advanced event processing
rules.

4 Intelligent Energy Control Using CEP
In this section we present our approach for a situation-aware en-
ergy control by applying intelligent sensor data processing on simple
buildings. After giving a short overview of Complex Event Process-
ing we present our general software architecture and a Domain Event
Model that integrates knowledge about domain specific concepts and
events. Finally, we illustrate the intelligent reasoning part of our ap-
proach by showing some event processing rules.

4.1 CEP Overview
Complex Event Processing (CEP) is a software architectural ap-
proach for processing continuous streams of high volumes of events
in real-time [8]. Everything that happens can be considered as an
event. A corresponding event object carries general metadata (event
ID, timestamp) and event-specific information, e.g. a sensor ID and
the measured temperature. Note that single events have no special
meaning, but must be correlated. CEP analyses continuous streams
of incoming events in order to identify the presence of complex se-
quences of events, so called event patterns.

A pattern match signifies a meaningful state of the environment
and causes either creating a new complex event or triggering an ap-
propriate action.

Fundamental concepts of CEP are an event processing language
(EPL), to express event processing rules consisting of event patterns
and actions, as well as an event processing engine that continuously
analyses the event stream and executes the matching rules.2 Com-
plex event processing and event-driven systems generally have the
following basic characteristics:

• Continuous in-memory processing: CEP is designed to handle a
consecutive input stream of events and in-memory processing en-
ables real-time operations.

• Correlating Data: It enables the combination of different events
from distinct sources including additional domain knowledge.
Event processing rules transform fine-grained simple events into
complex (business) events that represent a significant meaning for
the application domain.

• Temporal Operators: Within event stream processing, timer func-
tionalities as well as sliding time windows can be used to define
event patterns representing temporal relationships.

• Distributed Event Processing: Event processing can be distributed
on several rule engines (physically or logically). Thereby scalabil-
ity and the separation of different functionalities can be realized.

4.2 Event Processing Architecture
Luckham introduced the concept of event processing agents
(EPA) [8]. An EPA is a software component specialized on event
stream processing with its own rule engine and rule base. An event
processing network (EPN) connects several EPAs to constitute a soft-
ware architecture for event processing. Event processing agents com-
municate with each other by exchanging events.

2 Sample open source CEP engines are Esper and Drools Fusion.



EPAs provide an approach for modularizing and structuring rules:
Light-weighted agents with few rules fulfill a coherent domain-
specific task and improve comprehensibility and maintainability.
Furthermore, distributing the EPAs on different computing nodes en-
hances system performance and scalability [3].

Thus, the event-driven architecture of our energy control system is
based on a multi-staged EPN for structuring and organizing the event
processing rules. Figure 1 depicts the different EPAs and illustrates
the flow of events:

Figure 1. Event Processing Network (EPN) for Energy Management

Event Sources: We can distinguish different types of event sources
that correspond to the information that is used by our energy control
system (as already mentioned in section 2).

• General knowledge sources: There are general knowledge sources
that can emit application-specific events relevant for the build-
ings energy management. For instance, a calendar containing the
lecture schedules might create lectureStart events that signal the
scheduled starting time of a teaching session.

• Sensors: Low cost sensors as described in section 2 are used to
monitor the incidents in the building. For instance, motion sensors
and temperature sensors emit movement events as well as temper-
ature events. The contact switches produce contactSensor events
that signal if doors or windows are opened or closed, respectively.

Event Processing Network (EPN): Event processing is nothing
else than event transformation: the simple events emitted by the
event sources are transformed into more abstract application-specific
events for inferring appropriate control steps. The event transforma-
tions are processed by the EPAs depicted in figure 1.

• Cleaning/Filtering Agent: Due to technical problems, sensor data
is often inconsistent: e.g. duplicated readings or outliers must be
compensated. Therefore, in a cleaning step all sensor events have
to be pre-processed to overcome inconsistencies [3].
Furthermore, not all events are required in subsequent processing
stages. For instance, motion sensors may emit many movement
events within a small time interval, which are related to the same
incident. Therefore irrelevant events are filtered out to reduce the
total number of events. Using various processing rules, the Clean-
ing/Filtering Agent forwards cleaned sensor events events to the
Domain Agent.

• Domain Agent: The cleaned sensor events contain only low-level
technical information, e.g. sensor IDs that have no specific mean-
ing in the application domain, and are often incomplete for fur-
ther processing. Therefore, they should be transformed to domain

events by mapping plain sensor event data to domain concepts. For
instance, a measured temperature should be related to a certain
room and to the desired temperature of the corresponding room
type. The information necessary for this content enrichment step
is retrieved from the backend systems. The Domain Agent trans-
forms cleaned sensor events into enriched domain events and for-
wards them to the Situation Agent.

• Situation Agent: In a diagnosis step various domain events are syn-
thesized to a new (complex) situation event that characterizes a
particular state of the building. For example, contactSensor events
and movement events are correlated to a new roomOccupied event
signalizing that somebody is staying in a certain room. In sum-
mary, the Situation Agent processes a correlation step to create
new types of complex events that are propagated to the Energy
Control Agent.

• Energy Control Agent: Finally, the situation diagnosed from the
stream of sensor events must be correlated with the information
received from the general knowledge sources. The Energy Control
Agent emits an action event to trigger a certain control action that
reacts appropriately on the actual state of the building.
For instance, lectureStart events emitted by a calendar are com-
bined with roomOccupied events generated by the the Situation
Agent to trigger an appropriate control actions by creating an ac-
tion event of type increaseTemperature.

Event Sinks: The backend systems of the building management
serve as event sinks of the events produced by the Energy Control
Agent. Figure 1 shows two examples: an increaseTemperature event
could be sent to the energy control system to change directly the heat-
ing of a certain room. As another example, we can consider a reserve-
Room event that could be forwarded to the building management sys-
tem for generating automatically an entry into the occupancy plan of
the corresponding room.

4.3 Domain Event Model
A main contribution of our approach is integrating general domain
knowledge with sensor events in a Domain Event Model. Figure 2
shows the general structure of the Domain Event Model that distin-
guishes two dimensions, and thus yielding four different quadrants:

Figure 2. Structure of the Domain Event Model

• The World Model describes the structural or static concepts re-
garded in the system: First, it defines the domain concepts like
buildings, rooms or class schedules. Secondly, it defines the sen-
sor infrastructure the building is equipped with. For instance, what
different kind of sensors are used and where they are installed.

• The Event Model defines the dynamic aspects of the system, i.e.
all types of events that are considered in the system [4]. First, all
sensor events emitted by the different sensor types are described.
Secondly, it considers all domain events in the system: On the one
hand, these are the application events that are generated by CEP



rules and have a certain meaning in the application domain. For
instance, that a room is occupied for a certain time. Furthermore,
it defines context events, that are produced by general knowledge
sources, like calendar applications containing room schedules.

Of course, there are interrelations between the concepts of the dif-
ferent model parts. For instance, the sensor concept ’contact sensor’
is related to the domain concept ’room’ specifying the concrete posi-
tion of a certain sensor.

Figure 3 shows an excerpt of the Domain Event Model for our
university building scenario. Note that for simplicity and clarity, no
attributes are depicted in the diagram.

The Model of the Domain Concepts (upper left quadrant) describes
the hierarchy of different types of rooms in an university, such as
course rooms, offices, and server rooms. Course rooms can be fur-
ther refined into lecture rooms, labs, etc. Other concepts modeled
in figure 3 are heating plans that are related to each room and class
schedules for each course room. Neighbouring rooms are specified
by the adjacent relationship. Furthermore, the model defines room
equipment as windows and doors.3

The Model of the Sensors (lower left quadrant) specifies the differ-
ent types of sensors installed in the building. Note that in figure 3
sensor characteristics like measured variables, and quality of mea-
sures, like availability or accuracy, are omitted for clarity. However,
the model represents the location of the sensors by relating them to a
physical item of the domain model.
The Model of the Sensor Events (lower right quadrant) defines the
types of sensor events. Depending on the specific type of a sensor
different data can be produced. For instance, a contact sensor might
produce data for signalizing that a door has been opened. Further-
more, each sensor event is related by the sensed-by relationship to
a corresponding sensor, and thereby to a certain position. Note that
this relation shows the connection between the world and the event
model.
The Model of the Domain Events (upper right quadrant) presents all
application events considered in the system. On the one hand, there
are the context events that are produced directly by software compo-
nents. Figure 3 defines heatingStart events and lectureStart events as
specific examples of context events, which might be produced by a
heating plan and a class schedule, respectively. On the other hand,
situation events signal that a certain situation has occurred in the
building, e.g. a room has been occupied or freed.

Furthermore, action events are considered like increaseTempera-
ture or reserveRoom events. These events trigger some actions in the
backend system, e.g. turning up the heating. They are produced by
CEP rules that might correlate situation events and context events.

4.4 Event Processing Rules

In the following, we present some exemplary rules in a pseudo
language to provide a better understanding of the intelligent
reasoning capabilities our approach. An event processing rule
contains of two parts: a condition part describing the require-
ments for the rule to fire and an action part to be performed
if the requirements are matched. The condition is defined by
an event pattern using several operators and further constraints.

3 Note that this is not a very sophisticated model: many aspects are not shown,
e.g. different user types and their behavior defined by working times and the
usually used rooms.

Operators
AND Combination of events or constraints
NOT Negation of a constraint
-> Followed-by operator. Sequence of conditions.

Timer Timer(time) defines a time to wait
Timer.at(daytime) is a specific (optionally peri-
odic) point of time.

.within defines a time window for an event in which the
event has to happen to be considered.

The following two rules are part of the rule base of the Situation
Agent (see Figure 1) and produce a situation event. Note that these
rules detect a certain situation in the building that can be exploited in
different application domains. Here, we show how the Energy Con-
trol Agent can use identified situations to derive energy control ac-
tions. But also other kind or agents, for instance Security Agents can
make use of situation events for detecting security risk or incidents.

The first rule produces a situation event of type RoomOccupiedE-
vent indicating that a certain room is currently occupied.

rule: "room occupied"
CONDITION DoorOpenEvent AS d ->

Timer(5 minutes) ->
MovementEvent AS m
AND (d.room = m.room)

ACTION new RoomOccupiedEvent(d.room)

A room is assumed to be occupied if the door is opened and five
minutes later a movement is still observed. The delay will prevent
false positives, like only cleaning the room or just quickly picking up
some things. Note that the rule correlates two sensor events to derive
a new complex event of type situation event with a new application-
specific meaning.

The next rule considers the opposite situation: a room is not oc-
cupied if the door is closed and there is no movement within the
following 10 minutes.

rule: "room not occupied"
CONDITION DoorCloseEvent AS d AND

NOT MovementEvent.
within(10 minutes) AS m

AND (d.room = m.room)
ACTION new RoomNotOccupiedEvent(d.room)

The following rules reside in the rule base of the Energy Control
Agent (see Figure 1) and correlate situation events to derive some
action events triggering some reactions in the backend system.

The first occupancy per day of an office is of special importance,
since from then on the office is in use and needs to reach its operat-
ing temperature. Before that, room temperature could be a bit lower
yielding a reduction of the heating costs.

rule: "first usage"
CONDITION Timer.at(06:00 AM) ->

NOT RoomOccupiedEvent AS n ->
RoomOccupiedEvent AS r
AND (r.room.type = office)
AND (n.room = r.room)

ACTION IncreaseTemp(r.room)

The rule considers the situation in a certain room after 6:00 AM.
If then a RoomOccupied event r occurs and there was no other
RoomOccupied event n (between 6:00 and the occurrence of event



Figure 3. Domain Event Model

r) then the room is used for the first time that day and the tempera-
ture should be increased.

Another situation of interest is the ’final’ absence of an employee.
A shorter break, e.g. having lunch or a meeting, should not have the
effect of cooling down the employees office. But after the typical end
of the workday the probability that the room will be in use again is
very low. Therefore, the heating can now be lowered to reduce the
energy consumption.

rule: "after hour"
CONDITION Timer.at(06:00 PM) ->

RoomNotOccupiedEvent AS r
AND (r.room.type = office)

ACTION LowerTemp(r.room)

If after 6:00 PM a RoomNotOccupied event is captured in an office
room the temperature will be reduced.

The next rule illustrates how context events from general knowl-
edge sources and sensor events are correlated to derive an action
event. In particular, the rule describes the situation that though a lec-
ture is scheduled, the lecture room is not occupied.

rule: "planned, but not used"
CONDITION LectureStartEvent AS l ->

NOT RoomOccupiedEvent.
within(15 minutes) AS r

AND (l.room = r.room)
ACTION lowerTemp(r.room)

The rule will fire if a LectureStart event is captured for a certain
room, but within the following 15 minutes no RoomOccupied event
occurs. This leads to the assumption that the lecture will not take
place and accordingly the room will not be in use and the temperature
can be lowered to the idle state.

Finally, we present a simple rule that exploits further domain-
specific knowledge in the event reasoning. Several semantic rela-
tionships are represented in the Domain Event Model, which can be
exploited to enhance the reasoning capabilities of event processing.
For example, lecture rooms, seminar rooms and laboratories are all
of type course room as specified by a ’is-a’ relationship in the Do-
main Event Model. The semantical meaning of the ’is-a’ relationship

can be used in event processing: A rule for course rooms is implicitly
valid for all subtypes as well.

rule: "course room not used for more
than 1 hour"

CONDITION NOT RoomOccupiedEvent.
within(60 minutes) as r

AND (r.room.type = course)
ACTION lowerTemp(r.room)

If a course room is not used for at least 60 minutes, then the temper-
ature of the room can be decreased. This rule will match for a lecture
room, but not for other rooms as offices.

Note that we will investigate the modeling of much more semantic
relationships using an appropriate formalism in further researches.
For instance with OWL, relationships between concepts can be de-
scribed much more precisely. For OWL object properties ranges and
domains can be specified as well as further property characteris-
tics (as transitivity, symmetry or reflexivity). This information can
be exploited by more sophisticated reasoning, for instance by using
SPARQL query language.

5 Case Study / Evaluation
We have equipped one room of our university building with a sam-
ple setup of different physical sensors and implemented a prototype
of our event-driven energy control system. As sensor hardware we
used a Phidget4 Interface-Kit and corresponding motion sensor and
contact switches.

The event processing is implemented with the open source CEP
engine Esper 5. Esper provides the essential features of typical CEP
systems like time windows, external method calls, and event pattern
operators. The event processing rules are defined in a SQL-like rule
language , the so-called Continuous Query Language (CQL). In con-
trast to SQL the CQL queries are not executed on a Database, but
directly in-memory on the continuously arriving event stream.

Our experimental evaluation has proven the capabilities of CEP
to correlate the sensor data and achieve a real-time analysis and

4 http://www.phidgets.com
5 http://esper.codehaus.org



reaction based on the sensor data stream and event patterns.

Since we could only realize an example installation for one dis-
tinct room, the usefulness of our approach is evaluated on the basis
of considerations about the real usage. We assume a typical heating
behavior in a static manner starting heating at 6 AM until 9 PM. The
typical workday of an university lecturer (as an example of a non-
uniform user type) may be structured as followed: start of work at
8 AM, lecture between 10 AM and 11:30 AM, lunch break between
11:30 AM and 12 PM, exercise lesson between 12 PM and 1:30 PM,
and end of work at 5:30 PM.

Figure 4 visualizes the different heating behaviors by example of a
lecturer’s office room: (a) dynamic heating with our approach based
on situational awareness compared to (b) the static solution with a
fixed heating plan. The Human Presence depicts the occupancy of

Figure 4. Static versus dynamic heating

the room according to the typical workday defined above. The two
curves describe the heating level on the y-axes with respect to the
time.

As can be seen, the biggest differences, and therefore energy sav-
ings, appear during the time before and after the workday. Notice that
the usual hours of work may differ from lecturer to lecturer and thus
the static schedule can not be fitted to the typical behavior of one
lecturer.

In contrast, our approach provides a room-specific and situation-
aware control mechanism enabling a precise energy management that
additionally enables the heater to turn lower during temporary ab-
sence. In order to keep the room in a comfortable state, if the user
returns, the heaters level is only decreased and not completely turned
off for temporarily unoccupied rooms.

Based on these assumptions a calculation comparing the two dif-
ferent heating behaviors (static versus dynamic) results in a heating
reduction up to 30% and, accordingly, lower energy consumption and
carbon emission.

6 Conclusion

In this paper, a novel approach for intelligent energy management
by means of complex event processing and simple sensors has been
presented. The approach is different from other approaches in that
is based on a sophisticated representation of domain as well as sen-
sor knowledge and a multi-staged event processing architecture. By
the integration of domain knowledge and semantic information into

to the reasoning process we achieve an intelligent, situation-aware
behavior.

The approach allows an individualized, situation-aware energy
management of buildings according to the current occupancy status
of the separate rooms. By means of complex event processing an ex-
isting infrastructure with everyday sensors can be expanded into an
intelligent environment.

Directions of future research are, among others, the further en-
hancement of the semantic Domain Event Model as well as the devel-
opment of advanced concepts for the incorporation of the semantic
knowledge in event processing languages.

7 Acknowledgement
This work was supported in part by the European Community (Eu-
ropäischer Fonds für regionale Entwicklung – EFRE) under Research
Grant EFRE Nr.W2-80115112.

REFERENCES
[1] Y. Agarwal, B. Balaji, R. Gupta, J. Lyles, M. Wei, and T. Weng,

‘Occupancy-driven energy management for smart building automa-
tion’, in Proceedings of the 2nd ACM Workshop on Embedded Sensing
Systems for Energy-Efficiency in Building (BuildSys). ACM, (2010).

[2] J. C. Augusto and C. D. Nugent, ‘The use of temporal reasoning and
management of complex events in smart homes’, in Proceedings of the
16th Eureopean Conference on Artificial Intelligence (ECAI), pp. 778–
782. IOS Press, (2004).

[3] R. Bruns and J. Dunkel, Event-Driven Architecture: Softwarearchitek-
tur für ereignisgesteuerte Geschäftsprozesse, Springer-Verlag, Berlin
Heidelberg, 2010.

[4] J. Dunkel, A. Fernández, R. Ortiz, and S. Ossowski, ‘Injecting seman-
tics into event-driven architectures’, in Proceedings of the 11th Inter-
national Conference on Enterprise Information Systems (ICEIS), pp.
70–75. Springer, (2009).

[5] R. Holland-Moritz and R. Vandenhouten, ‘A flexible architecture for in-
telligent management systems’, in Proceedings of the 3rd International
Symposium on Logistics and Industrial Informatics (LINDI), pp. 83–86.
IEEE Computer Society, (2011).

[6] S. R. Jeffery, G. Alonso, M. J. Franklin, and J. Widom W. Hong, ‘A
pipelined framework for online cleaning of sensor data streams’, in Pro-
ceedings of the International Conference on Data Engineering (ICDE),
p. 140, (2006).

[7] J. Landay, Y. Shi, D. J. Patterson, Y. Rogers, X. Xie, J. Scott, A.J. Bern-
heim Brush, J. Krumm, B. Meyers, M. Hazas, S. Hodges, and N. Vil-
lar, ‘Preheat: Controlling home heating using occupancy prediction’, in
Proceedings of the 13th International Conference on Ubiquitous Com-
puting (UbiComp), pp. 281–290. ACM, (2011).

[8] D. C. Luckham, The Power of Events: An Introduction to Complex
Event Processing in Distributed Enterprise Systems, Addison-Wesley,
Boston, 2002.

[9] S. Selvakennedy, U. Rohm, and B. Scholz, ‘Event processing middle-
ware for wireless sensor networks’, in Proceedings of the International
Conference on Parallel Processing Workshops (ICPPW), p. 65, (2007).

[10] N. Stojanovic, D. Milenovic, Y. Xu, L. Stojanovic, D. Anicic, and
R. Studer, ‘An intelligent event-driven approach for efficient energy
consumption in commercial buildings: Smart office use case’, in Pro-
ceedings of the International Conference on Distributed Event-based
System, pp. 303–312. ACM, (2011).

[11] J. Y. C. Wen, G. Y. Lin, T. Sung, M. Liang, G. Tsai, and M. W. Feng, ‘A
complex event processing architecture for energy and operation man-
agement’, in Proceedings of the 5th International Conference on Dis-
tributed Event-Based Systems (DEBS), pp. 313–316. ACM, (2011).

[12] Y. Xu, N. Stojanovic, L. Stojanovic, D. Anicic, and R. Studer, ‘An ap-
proach for more efficient energy consumption based on real-time situa-
tional awareness’, in The Semanic Web: Research and Applications, pp.
270–284. Springer, (2011).


