TY - JOUR A1 - Lechner, Werner T1 - Face recogniton based on the optimal combination of neural networks, eigenfaces and least squares matching methods N2 - Report of a research project of the Fachhochschule Hannover, University of Applied Sciences and Arts, Department of Information Technologies. Automatic face recognition increases the security standards at public places and border checkpoints. The picture inside the identification documents could widely differ from the face, that is scanned under random lighting conditions and for unknown poses. The paper describes an optimal combination of three key algorithms of object recognition, that are able to perform in real time. The camera scan is processed by a recurrent neural network, by a Eigenfaces (PCA) method and by a least squares matching algorithm. Several examples demonstrate the achieved robustness and high recognition rate. KW - Biometrie KW - Neuronales Netz KW - Künstliche Intelligenz KW - Gesichtserkennung KW - face recognition KW - eigenface Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bsz:960-opus-470 ER - TY - RPRT A1 - Lechner, Werner T1 - Aufbau eines mobilen Systems zur Erkennung von Gesichtern durch die optimale Kombination neuronaler Netze mit Eigenwert- und Matching-Methoden N2 - Die computergestützte Erkennung von Personen basiert auf der quantitativen Feststellung einer möglichst weitgehenden Übereinstimmung zwischen einer gespeicherten Graphik und dem momentan erfassten Kamerabild. Der vorliegende Forschungsbericht beschreibt ein solches Erkennungssystem, das auf der optimalen Kombination unterschiedlicher, sich gegenseitig ergänzender Erkennungsverfahren beruht. Im Zentrum des Erkennungssystems arbeitet als wesentliche Komponente ein neuronales Netz. KW - Biometrie KW - Neuronales Netz KW - Künstliche Intelligenz KW - artificial intelligence KW - neuronal networks Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bsz:960-opus-298 ER - TY - CHAP A1 - Lechner, Werner A1 - Müller, Frank T1 - Intelligent Control of Autonomous Six-Legged Robots by Neural Networks N2 - Autonomous mobile six-legged robots are able to demonstrate the potential of intelligent control systems based on recurrent neural networks. The robots evaluate only two forward and two backward looking infrared sensor signals. Fast converging genetic training algorithms are applied to train the robots to move straight in six directions. The robots performed successfully within an obstacle environment and there could be observed a never trained useful interaction between each of the single robots. The paper describes the robot systems and presents the test results. Video clips are downloadable under www.inform.fh-hannover.de/download/lechner.php. Held on IFAC International Conference on Intelligent Control Systems and Signal Processing (ICONS 2003, April 2003, Portugal). KW - Künstliche Intelligenz KW - Robotik KW - Neuronales Netz KW - Genetischer Algorithmus KW - Intelligent control KW - Articial intelligence KW - Neural networks KW - Neural controls KW - Neural-network models KW - Robotics KW - Genetic algorithms Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bsz:960-opus-289 ER -